Scientific American Supplement, No. 363, December 16, 1882

Part 1 out of 3

Produced by Olaf Voss, Don Kretz, Juliet Sutherland, Charles Franks
and the Online Distributed Proofreaders Team




Scientific American Supplement. Vol. XIV, No. 363.

Scientific American established 1845

Scientific American Supplement, $5 a year.

Scientific American and Supplement, $7 a year.

* * * * *


Their history, dimensions, and commercial influence

Cottrau's Locomotive for Ascending Steep Grades.--1 figure

Bachmann's Steam Drier--3 figures

H. S. Parmelee's Patent Automatic sprinkler.--2 figures

Instrument for Drawing Converging Straight Lines.--10 figures

Feed Water Heater and Purifier. By GEO. S. STRONG.--2 figures

Paper Making "Down East."

Goulier's Tube Gauge.--1 figure.-Plan and longitudinal and
transverse sections

Soldering Without an Iron

Working Copper Ores at Spenceville

Dyes on Yarns and Tissues. By JULES JOFFRE.--Reagents.--Red
colors.--Violet colors

Chevalet's Condenso-purifier for Gas.--2 figures.--Elevation and

Artificial Ivory

Creosote Impurities. By Prof P. W. BEDFORD

III. ELECTRICITY. ETC.--Sir William Thomson's Pile--2 figures

Siemens' Telemeter.--1 figure.--Siemens electric telemeter

Physics Without Apparatus.--Experiment in static electricity.--
1 figure

The Cascade Battery. By F. HIGGINS.--1 figure

Perfectly Lovely Philosophy

IV. ASTRONOMY, ETC.--The Comet as seen from the Pyramids
near Cairo, Egypt.--1 figure

Sunlight and skylight at High Altitudes.--Influence of the
atmosphere upon the solar spectrum.--Observations of Capt.
Abney and Professor Langley.--2 figures

How to Establish a True Meridian

V. MINERALOGY.--The Mineralogical Localities in and Around
New York City, and the Minerals Occurring Therein. By NELSON
H. DAKTON. Part III.--Hoboken minerals.--Magnesite.--Dolomite.
--Brucite.--Aragonite.--Serpentine.--Chromic iron--Datholite.
--Pectolite.--Feldspar.--Copper mines, Arlington, N.J.-Green
malachite.--Red oxide of copper.--Copper glance.--Erubescite

VI. ENTOMOLOGY.--The Buckeye Leaf Stem Borer

Defoliation of Oak Trees by _Dryocampa senatoria_ in Perry
County, Pa.

Efficacy of Chalcid Egg Parasites

On the Biology of _Gonatopis Pilosus_, Thoms

Species of Otiorhynchadae Injurious to Cultivated Plants

VII. ART, ARCHITECTURE, ETC.--Monteverde's Statue of Architecture.
--Full page illustration, _Lit Architectura_.

Design for a Gardener's Cottage.--1 figure

VIII. HYGIENE AND MEDICINE.--Remedy for Sick Headache

IX. ORNITHOLOGY.--Sparrows in the United States.--Effects of
acclimation, etc.

X. MISCELLANEOUS.--James Prescott Joule, with Portrait.--A
sketch of the life and investigations of the discoverer of the
mechanical equivalent of heat. By J. T. BOTTOMLEY

The Proposed Dutch International Colonial and General Export
Exhibition.--1 figure.--Plan of the Amsterdam Exhibition

* * * * *


Some centuries ago, the appearance of so large a comet as is now
interesting the astronomical world, almost contemporaneously with our
victory in Egypt, would have been looked upon as an omen of great
portent, and it is a curious coincidence that the first glimpse Sir
Garnet Wolseley had of this erratic luminary was when standing, on
the eventful morning of September 13, 1882, watch in hand, before the
intrenchments of Tel-el-Kebir, waiting to give the word to advance.
As may be seen in our sketch, the comet is seen in Egypt in all its
magnificence, and the sight in the early morning from the pyramids (our
sketch was taken at 4 A.M.) is described as unusually grand.--_London


* * * * *



James Prescott Joule was born at Salford, on Christmas Eve of the year
1818. His father and his grandfather before him were brewers, and the
business, in due course, descended to Mr. Joule and his elder brother,
and by them was carried on with success till it was sold, in 1854.
Mr. Joule's grandfather came from Elton, in Derbyshire, settled near
Manchester, where he founded the business, and died at the age of
fifty-four, in 1799. His father, one of a numerous family, married a
daughter of John Prescott of Wigan. They had five children, of
whom James Prescott Joule was the second, and of whom three were
sons--Benjamin, the eldest, James, and John--and two daughters--Alice
and Mary. Mr. Joule's mother died in 1836 at the age of forty-eight; and
his father, who was an invalid for many years before his death, died at
the age of seventy-four, in the year 1858.

Young Joule was a delicate child, and was not sent to school. His early
education was commenced by his mother's half sister, and was carried
on at his father's house, Broomhill, Pendlebury, by tutors till he was
about fifteen years of age. At fifteen he commenced working in the
brewery, which, as his father's health declined, fell entirely into the
hands of his brother Benjamin and himself.

Mr. Joule obtained his first instruction in physical science from
Dalton, to whom his father sent the two brothers to learn chemistry.
Dalton, one of the most distinguished chemists of any age or country,
was then President of the Manchester Literary and Philosophical Society,
and lived and received pupils in the rooms of the Society's house. Many
of his most important memoirs were communicated to the Society, whose
_Transactions_ are likewise enriched by a large number of communications
from his distinguished pupil. Dalton's instruction to the two young men
commenced with arithmetic, algebra, and geometry. He then taught them
natural philosophy out of Cavallo's text-book, and afterward, but only
for a short time before his health gave way, in 1837, chemistry from his
own "New System of Chemical Philosophy." "Profound, patient, intuitive,"
his teaching must have had great influence on his pupils. We find Mr.
Joule early at work on the molecular constitution of gases, following in
the footsteps of his illustrious master, whose own investigations on the
constitution of mixed gases, and on the behavior of vapors and gases
under heat, were among the most important of his day, and whose
brilliant discovery of the atomic theory revolutionized the science of
chemistry and placed him at the head of the philosophical chemists of


Under Dalton, Mr. Joule first became acquainted with physical apparatus;
and the interest excited in his mind very soon began to produce fruit.
Almost immediately he commenced experimenting on his own account.
Obtaining a room in his father's house for the purpose, he began by
constructing a cylinder electric machine in a very primitive way. A
glass tube served for the cylinder; a poker hung up by silk threads, as
in the very oldest forms of electric machine, was the prime conductor;
and for a Leyden jar he went back to the old historical jar of Cunaeus,
and used a bottle half filled with water, standing in an outer vessel,
which contained water also.

Enlarging his stock of apparatus, chiefly by the work of his own hands,
he soon entered the ranks as an investigator, and original papers
followed each other in quick succession. The Royal Society list now
contains, the titles of ninety-seven papers due to Joule, exclusive of
over twenty very important papers detailing researches undertaken by him
conjointly with Thomson, with Lyon Playfair, and with Scoresby.

Mr. Joule's first investigations were in the field of magnetism. In
1838, at the age of nineteen, he constructed an electro-magnetic engine,
which he described in Sturgeon's "Annals of Electricity" for January
of that year. In the same year, and in the three years following, he
constructed other electro-magnetic machines and electro-magnets of novel
forms; and experimenting with the new apparatus, he obtained results
of great importance in the theory of electro-magnetism. In 1840 he
discovered and determined the value of the limit to the magnetization
communicable to soft iron by the electric current; showing for the case
of an electro-magnet supporting weight, that when the exciting current
is made stronger and stronger, the sustaining power tends to a certain
definite limit, which, according to his estimate, amounts to about
140 lb. per square inch of either of the attracting surfaces.
He investigated the relative values of solid iron cores for the
electro-magnetic machine, as compared with bundles of iron wire; and,
applying the principles which he had discovered, he proceeded to the
construction of electro-magnets of much greater lifting power than any
previously made, while he studied also the methods of modifying the
distribution of the force in the magnetic field.

In commencing these investigations he was met at the very outset, as he
tells us, with "the difficulty, if not impossibility, of understanding
experiments and comparing them with one another, which arises in general
from incomplete descriptions of apparatus, and from the arbitrary and
vague numbers which are used to characterize electric currents. Such a
practice," he says, "might be tolerated in the infancy of science; but
in its present state of advancement greater precision and propriety are
imperatively demanded. I have therefore determined," he continues,
"for my own part to abandon my old quantity numbers, and to express my
results on the basis of a unit which shall be at once scientific and

The discovery by Faraday of the law of electro-chemical equivalents
had induced him to propose the voltameter as a measurer of electric
currents, but the system proposed had not been used in the researches
of any electrician, not excepting those of Faraday himself. Joule,
realizing for the first time the importance of having a system of
electric measurement which would make experimental results obtained
at different times and under various circumstances comparable among
themselves, and perceiving at the same time the advantages of a system
of electric measurement dependent on, or at any rate comparable with,
the chemical action producing the electric current, adopted as unit
quantity of electricity the quantity required to decompose nine grains
of water, 9 being the atomic weight of water, according to the chemical
nomenclature then in use.

He had already made and described very important improvements in the
construction of galvanometers, and he graduated his tangent galvanometer
to correspond with the system of electric measurement he had adopted.
The electric currents used in his experiments were thenceforth measured
on the new system; and the numbers given in Joule's papers from 1840
downward are easily reducible to the modern absolute system of electric
measurements, in the construction and general introduction of which
he himself took so prominent a part. It was in 1840, also, that after
experimenting on improvements in voltaic apparatus, he turned his
attention to "the heat evolved by metallic conductors of electricity and
in the cells of a battery during electrolysis." In this paper, and those
following it in 1841 and 1842, he laid the foundation of a new province
in physical science-electric and chemical thermodynamics-then totally
unknown, but now wonderfully familiar, even to the roughest common sense
practical electrician. With regard to the heat evolved by a metallic
conductor carrying an electric current, he established what was already
supposed to be the law, namely, that "the quantity of heat evolved by
it [in a given time] is always proportional to the resistance which it
presents, whatever may be the length, thickness, shape, or kind of the
metallic conductor," while he obtained the law, then unknown, that
the heat evolved is proportional to the _square_ of the quantity of
electricity passing in a given time. Corresponding laws were established
for the heat evolved by the current passing in the electrolytic cell,
and likewise for the heat developed in the cells of the battery itself.

In the year 1840 he was already speculating on the transformation of
chemical energy into heat. In the paper last referred to and in a short
abstract in the _Proceedings of the Royal Society_, December, 1840, he
points out that the heat generated in a wire conveying a current of
electricity is a part of the heat of chemical combination of the
materials used in the voltaic cell, and that the remainder, not the
whole heat of combination, is evolved within the cell in which the
chemical action takes place. In papers given in 1841 and 1842, he pushes
his investigations further, and shows that the sum of the heat produced
in all parts of the circuit during voltaic action is proportional to the
chemical action that goes on in the voltaic pile, and again, that the
quantities of heat which are evolved by the combustion of equivalents
of bodies are proportional to the intensities of their affinities for
oxygen. Having proceeded thus far, he carried on the same train of
reasoning and experiment till he was able to announce in January, 1843,
that the magneto-electric machine enables us to _convert mechanical
power into heat_. Most of his spare time in the early part of the year
1843 was devoted to making experiments necessary for the discovery of
the laws of the development of heat by magneto-electricity, and for the
definite determination of the mechanical value of heat.

At the meeting of the British Association at Cork, on August 21, 1843,
he read his paper "On the Calorific Effects of Magneto-Electricity,
and on the Mechanical Value of Heat." The paper gives an account of an
admirable series of experiments, proving that _heat is generated_ (not
merely _transferred_ from some source) by the magneto-electric machine.
The investigation was pushed on for the purpose of finding whether a
_constant ratio exists between the heat generated and the mechanical
power_ used in its production. As the result of one set of
magneto-electric experiments, he finds 838 foot pounds to be the
mechanical equivalent of the quantity of heat capable of increasing the
temperature of one pound of water by one degree of Fahrenheit's scale.
The paper is dated Broomhill, July, 1843, but a postscript, dated
August, 1843, contains the following sentences:

"We shall be obliged to admit that Count Rumford was right in
attributing the heat evolved by boring cannon to friction, and not (in
any considerable degree) to any change in the capacity of the metal. I
have lately proved experimentally that _heat is evolved by the passage
of water through narrow tubes_. My apparatus consisted of a piston
perforated by a number of small holes, working in a cylindrical glass
jar containing about 7 lb. of water. I thus obtained one degree of heat
per pound of water from a mechanical force capable of raising about 770
lb. to the height of one foot, a result which will be allowed to be very
strongly confirmatory of our previous deductions. I shall lose no time
in repeating and extending these experiments, being satisfied that the
grand agents of nature are, by the Creator's fiat, _indestructible_, and
that wherever mechanical force is expended, an exact equivalent of heat
is _always_ obtained."

This was the first determination of the dynamical equivalent of heat.
Other naturalists and experimenters about the same time were attempting
to compare the quantity of heat produced under certain circumstances
with the quantity of work expended in producing it; and results and
deductions (some of them very remarkable) were given by Seguin (1839),
Mayer (1842), Colding (1843), founded partly on experiment, and partly
on a kind of metaphysical reasoning. It was Joule, however, who first
definitely proposed the problem of determining the relation between heat
produced and work done in any mechanical action, and solved the problem

It is not to be supposed that Joule's discovery and the results of his
investigation met with immediate attention or with ready acquiescence.
The problem occupied him almost continuously for many years; and in 1878
he gives in the _Philosophical Transactions_ the results of a fresh
determination, according to which the quantity of work required to be
expended in order to raise the temperature of one pound of water weighed
in vacuum from 60 deg. to 61 deg. Fahr., is 772.55 foot pounds of work at the
sea level and in the latitude of Greenwich. His results of 1849 and 1878
agree in a striking manner with those obtained by Hirn and with those
derived from an elaborate series of experiments carried out by Prof.
Rowland, at the expense of the Government of the United States.

His experiments subsequent to 1843 on the dynamical equivalent of
heat must be mentioned briefly. In that year his father removed from
Pendlebury to Oak Field, Whalley Range, on the south side of Manchester,
and built for his son a convenient laboratory near to the house. It was
at this time that he felt the pressing need of accurate thermometers;
and while Regnault was doing the same thing in France, Mr. Joule
produced, with the assistance of Mr. Dancer, instrument maker, of
Manchester, the first English thermometers possessing such accuracy
as the mercury-in-glass thermometer is capable of. Some of them were
forwarded to Prof. Graham and to Prof. Lyon Playfair; and the production
of these instruments was in itself a most important contribution to
scientific equipment.

As the direct experiment of friction of a fluid is dependent on no
hypothesis, and appears to be wholly unexceptionable, it was used by Mr.
Joule repeatedly in modified forms. The stirring of mercury, of oil,
and of water with a paddle, which was turned by a falling weight,
was compared, and solid friction, the friction of iron on iron under
mercury, was tried; but the simple stirring of water seemed preferable
to any, and was employed in all his later determinations.

In 1847 Mr. Joule was married to Amelia, daughter of Mr. John Grimes,
Comptroller of Customs, Liverpool. His wife died early (1854), leaving
him one son and one daughter.

The meeting of the British Association at Oxford, in this year, proved
an interesting and important one. Here Joule read a fresh paper "On the
Mechanical Equivalent of Heat." Of this meeting Sir William Thomson
writes as follows to the author of this notice:

"I made Joule's acquaintance at the Oxford meeting, and it quickly
ripened into a lifelong friendship.

"I heard his paper read in the section, and felt strongly impelled at
first to rise and say that it must be wrong, because the true mechanical
value of heat given, suppose in warm water, must, for small differences
of temperature, be proportional to the square of its quantity. I knew
from Carnot that this _must_ be true (and it _is_ true; only now I call
it 'motivity,' to avoid clashing with Joule's 'mechanical value'). But
as I listened on and on, I saw that (though Carnot had vitally important
truth, not to be abandoned) Joule had certainly a great truth and a
great discovery, and a most important measurement to bring forward. So,
instead of rising, with my objection, to the meeting, I waited till it
was over, and said my say to Joule himself, at the end of the meeting.
This made my first introduction to him. After that I had a long talk
over the whole matter at one of the _conversaziones_ of the Association,
and we became fast friends from thenceforward. However, he did not tell
me he was to be married in a week or so; but about a fortnight later I
was walking down from Chamounix to commence the tour of Mont Blanc, and
whom should I meet walking up but Joule, with a long thermometer in his
hand, and a carriage with a lady in it not far off. He told me he had
been married since we had parted at Oxford! and he was going to try for
elevation of temperature in waterfalls. We trysted to meet a few days
later at Martigny, and look at the Cascade de Sallanches, to see if it
might answer. We found it too much broken into spray. His young wife, as
long as she lived, took complete interest in his scientific work, and
both she and he showed me the greatest kindness during my visits to them
in Manchester for our experiments on the thermal effects of fluid in
motion, which we commenced a few years later"

"Joule's paper at the Oxford meeting made a great sensation. Faraday was
there and was much struck with it, but did not enter fully into the new
views. It was many years after that before any of the scientific chiefs
began to give their adhesion. It was not long after, when Stokes told me
he was inclined to be a Joulite."

"Miller, or Graham, or both, were for years quite incredulous as to
Joule's results, because they all depended on fractions of a degree of
temperature--sometimes very small fractions. His boldness in making such
large conclusions from such very small observational effects is almost
as noteworthy and admirable as his skill in extorting accuracy from
them. I remember distinctly at the Royal Society, I think it was either
Graham or Miller, saying simply he did not believe Joule, because he had
nothing but hundredths of a degree to prove his case by."

The friendship formed between Joule and Thomson in 1847 grew rapidly.
A voluminous correspondence was kept up between them, and several
important researches were undertaken by the two friends in common. Their
first joint research was on the thermal effects experienced by air
rushing through small apertures The results of this investigation give
for the first time an experimental basis for the hypothesis assumed
without proof by Mayer as the foundation for an estimate of the
numerical relation between quantities of heat and mechanical work, and
they show that for permanent gases the hypothesis is very approximately
true. Subsequently, Joule and Thomson undertook more comprehensive
investigations on the thermal effects of fluids in motion, and on the
heat acquired by bodies moving rapidly through the air. They found the
heat generated by a body moving at one mile per second through the air
sufficient to account for its ignition. The phenomena of "shooting
stars" were explained by Mr. Joule in 1847 by the heat developed by
bodies rushing into our atmosphere.

It is impossible within the limits to which this sketch is necessarily
confined to speak in detail of the many researches undertaken by Mr.
Joule on various physical subjects. Even of the most interesting of
these a very brief notice must suffice for the present.

Molecular physics, as I have already remarked, early claimed his
attention. Various papers on electrolysis of liquids, and on the
constitution of gases, have been the result. A very interesting paper
on "Heat and the Constitution of Elastic Fluids" was read before
the Manchester Literary and Philosophical Society in 1848. In it he
developed Daniel Bernoulli's explanation of air pressure by the impact
of the molecules of the gas on the sides of the vessel which contains
it, and from very simple considerations he calculated the average
velocity of the particles requisite to produce ordinary atmospheric
pressure at different temperatures. The average velocity of the
particles of hydrogen at 32 deg. F. he found to be 6,055 feet per second,
the velocities at various temperatures being proportional to the square
roots of the numbers which express those temperatures on the absolute
thermodynamic scale.

His contribution to the theory of the velocity of sound in air was
likewise of great importance, and is distinguished alike for the
acuteness of his explanations of the existing causes of error in the
work of previous experimenters, and for the accuracy, so far as
was required for the purpose in hand, of his own experiments. His
determination of the specific heat of air, pressure constant, and the
specific heat of air, volume constant, furnished the data necessary for
making Laplace's theoretical velocity agree with the velocity of sound
experimentally determined. On the other hand, he was able to account
for most puzzling discrepancies, which appeared in attempted direct
determinations of the differences between the two specific heats by
careful experimenters. He pointed out that in experiments in which air
was allowed to rush violently or _explode_ into a vacuum, there was a
source of loss of energy that no one had taken account of, namely,
in the sound produced by the explosion. Hence in the most careful
experiments, where the vacuum was made as perfect as possible, and the
explosion correspondingly the more violent, the results were actually
the worst. With his explanations, the theory of the subject was rendered
quite complete.

Space fails, or I should mention in detail Mr. Joule's experiments on
magnetism and electro-magnets, referred to at the commencement of this
sketch. He discovered the now celebrated change of dimensions produced
by the magnetization of soft iron by the current. The peculiar noise
which accompanies the magnetization of an iron bar by the current,
sometimes called the "magnetic tick," was thus explained.

Mr. Joule's improvements in galvanometers have already been incidentally
mentioned, and the construction by him of accurate thermometers has been
referred to. It should never be forgotten that _he first_ used small
enough needles in tangent galvanometers to practically annul error from
want of uniformity of the magnetic field. Of other improvements and
additions to philosophical instruments may be mentioned a thermometer,
unaffected by radiation, for measuring the temperature of the
atmosphere, an improved barometer, a mercurial vacuum pump, one of the
very first of the species which is now doing such valuable work, not
only in scientific laboratories, but in the manufacture of incandescent
electric lamps, and an apparatus for determining the earth's horizontal
magnetic force in absolute measure.

Here this imperfect sketch must close. My limits are already passed. Mr.
Joule has never been in any sense a public man; and, of those who know
his name as that of the discoverer who has given the experimental basis
for the grandest generalization in the whole of physical science, very
few have ever seen his face. Of his private character this is scarcely
the place to speak. Mr. Joule is still among us. May he long be spared
to work for that cause to which he has given his life with heart-whole
devotion that has never been excelled.

In June, 1878, he received a letter from the Earl of Beaconsfield
announcing to him that Her Majesty the Queen had been pleased to grant
him a pension of L200 per annum. This recognition of his labors by his
country was a subject of much gratification to Mr. Joule.

Mr. Joule received the Gold Royal Medal of the Royal Society in 1852,
the Copley Gold Medal of the Royal Society in 1870, and the Albert Medal
of the Society of Arts from the hand of the Prince of Wales in 1880.


* * * * *


The recent adoption of the constitutional amendment abolishing tolls on
the canals of New York State has revived interest in these water ways.
The overwhelming majority by which the measure was passed shows, says
the _Glassware Reporter_, that the people are willing to bear the cost
of their management by defraying from the public treasury all expenses
incident to their operation. That the abolition of the toll system will
be a great gain to the State seems to be admitted by nearly everybody,
and the measure met with but little opposition except from the railroad
corporations and their supporters.

At as early a date as the close of the Revolutionary War, Mr. Morris had
suggested the union of the great lakes with the Hudson River, and in
1812 he again advocated it. De Witt Clinton, of New York, one of the
most, valuable men of his day, took up the idea, and brought the leading
men of his State to lend him their support in pushing it. To dig a
canal all the way from Albany to Lake Erie was a pretty formidable
undertaking; the State of New York accordingly invited the Federal
government to assist in the enterprise.

The canal was as desirable on national grounds as on any other, but the
proposition met with a rebuff, and the Empire State then resolved to
build the canal herself. Surveyors were sent out to locate a line for
it, and on July 4, 1817, ground was broken for the canal by De Witt
Clinton, who was then Governor of the State.

The main line, from Albany, on the Hudson, to Buffalo, on Lake Erie,
measures 363 miles in length, and cost $7,143,789. The Champlain,
Oswego, Chemung, Cayuga, and Crooked Lake canals, and some others, join
the main line, and, including these branch lines, it measures 543 miles
in length, and cost upward of $11,500,000. This canal was originally 40
feet in breadth at the water line, 28 feet at the bottom, and 4 feet in
depth. Its dimensions proved too small for the extensive trade which it
had to support, and the depth of water was increased to 7 feet, and the
extreme breadth of the canal to 60 feet. There are 84 locks on the main
line. These locks, originally 90 feet in length and 15 in breadth, and
with an average lift of 8 feet 2 inches, have since been much enlarged.
The total rise and fall is 692 feet. The towpath is elevated 4 feet
above the level of the water, and is 10 feet in breadth. At Lockport the
canal descends 60 feet by means of 5 locks excavated in solid rock, and
afterward proceeds on a uniform level for a distance of 63 miles to the
Genesee River, over which it is carried on an aqueduct having 9 arches
of 50 feet span each. Eight and a half miles from this point it passes
over the Cayuga marsh, on an embankment 2 miles in length, and in some
places 70 feet in height. At Syracuse, the "long level" commences, which
extends for a distance of 691/2 miles to Frankfort, without an intervening
lock. After leaving Frankfort, the canal crosses the river Mohawk, first
by an aqueduct 748 feet in length, supported on 16 piers, elevated 25
feet above the surface of the river, and afterward by another aqueduct
1,188 feet in length, and emerges into the Hudson at Albany.

This great work was finished in 1825, and its completion was the
occasion of great public rejoicing. The same year that the Erie Canal
was begun, ground was broken for a canal from Lake Champlain to the
Hudson, sixty-three miles in length. This work was completed in 1823.

The construction of these two water ways was attended with the most
interesting consequences. Even before they were completed their value
had become clearly apparent. Boats were placed upon the Erie Canal as
fast as the different levels were ready for use, and set to work in
active transportation. They were small affairs compared with those of
the present day, being about 50 or 60 tons burden, the modern canal boat
being 180 or 200 tons. Small as they were, they reduced the cost of
transportation immediately to one-tenth what it had been before. A ton
of freight by land from Buffalo to Albany cost at that time $100. When
the canal was open its entire length, the cost of freight fell from
fifteen to twenty-five dollars a ton, according to the class of article
carried; and the time of transit from 20 to 8 days, Wheat at that time
was worth only $33 a ton in western New York, and it did not pay to send
it by land to New York. When sent to market at all, it was floated down
the Susquehanna to Baltimore, as being the cheapest and best market.
The canal changed that. It now became possible to send to market a wide
variety of agricultural produce--fruit, grain, vegetables, etc.--which,
before the canal was built, either had no value at all, or which could
be disposed of to no good advantage. It is claimed by the original
promoters of the Erie Canal, who lived to see its beneficial effects
experienced by the people of the country, that their work, costing less
than $8.000,000 and paying its whole cost of construction in a very
few years, added $100,000,000 to the value of the farms of New York by
opening up good and ready markets for their products. The canal had
another result. It made New York city the commercial metropolis of the
country. An old letter, written by a resident of Newport, R. I., in that
age, has lately been discovered, which speaks of New York city, and
says: "If we do not look out, New York will get ahead of us." Newport
was then one of the principal seaports of the country; it had once been
the first. New York city certainly did "get ahead of us" after the Erie
Canal was built. It got ahead of every other commercial city on the
coast. Freight, which had previously gone overland from Ohio and the
West to Pittsburg, and thence to Philadelphia, costing $120 a ton
between the two cities named, now went to New York by way of the Hudson
River and the Erie Canal and the lakes. Manufactures and groceries
returned to the West by the same route, and New York became a
flourishing and growing emporium immediately. The Erie Canal was
enlarged in 1835, so as to permit the passage of boats of 100 tons
burden, and the result was a still further reduction of the cost of
freighting, expansion of traffic, and an increase of the general
benefits conferred by the canal. The Champlain Canal had an effect upon
the farms and towns lying along Lake Champlain, in Vermont and New York,
kindred in character to that above described in respect to the Erie
Canal. It brought into the market lands and produce which before had
been worthless, and was a great blessing to all concerned.

There can be no doubt that the building of the Erie Canal was the wisest
and most far-seeing enterprise of the age. It has left a permanent and
indelible mark upon the face of the republic of the United States in the
great communities it has directly assisted to build up at the West, and
in the populous metropolis it created at the mouth of the Hudson River.
None of the canals which have been built to compete with it have yet
succeeded in regaining for their States what was lost to them when the
Erie Canal went into operation. This water route is still the most
important artificial one of its class in the country, and is only
equaled by the Welland Canal in Canada, which is its closest rival. Now
that it is free, it will retain its position as the most popular water
route to the sea from the great West. The Mississippi River will divert
from it all the trade flowing to South America and Mexico; but for the
northwest it will be the chief water highway to the ocean.

* * * * *


We borrow, from our contemporary _La Nature_, the annexed figure,
illustrating an ingenious type of locomotive designed for equally
efficient use on both level surfaces and heavy grades.


As well known, all the engines employed on level roads are provided with
large driving wheels, which, although they have a comparatively feeble
tractive power, afford a high speed, while, on the contrary, those that
are used for ascending heavy grades have small wheels that move slowly,
but possess, as an offset, a tractive power that enables them to
overcome the resistances of gravity.

M. Cottrau's engine possesses the qualities of both these types, since
it is provided with wheels of large and small diameter, that may be used
at will. These two sets of wheels, as may be seen from the figure, are
arranged on the same driving axle. The large wheels are held apart
the width of the ordinary track, while the small wheels are placed
internally, or as in the case represented in the figure, externally.
These two sets of wheels, being fixed solidly to the same axle, revolve

On level surfaces the engine rests on the large wheels, which revolve
in contact with the rails of the ordinary track, and it then runs with
great speed, while the auxiliary wheels revolve to no purpose. On
reaching an ascent, on the contrary, the engine meets with an elevated
track external or internal to the ordinary one, and which engages with
the auxiliary wheels. The large wheels are then lifted off the ordinary
track and revolve to no purpose. In both cases, the engine is placed
under conditions as advantageous as are those that are built especially
for the two types of roads. The idea appears to be a very ingenious one,
and can certainly be carried out without disturbing the working of the
locomotive. In fact, the same number of piston strokes per minute may
be preserved in the two modes of running, so as to reduce the speed in
ascending, in proportion to the diameters of the wheels. There will thus
occur the same consumption of steam. On another hand, there is nothing
to prevent the boiler from keeping up the same production of steam, for
it has been ascertained by experience, on the majority of railways, that
the speed of running has no influence on vaporization, and that the same
figures may be allowed for passenger as for freight locomotives.

The difficulties in the way of construction that will be met with in the
engine under consideration will be connected with the placing of the
double wheels, which will reduce the already limited space at one's
disposal, and with the necessity that there will be of strengthening all
the parts of the mechanism that are to be submitted to strain.

The installation of the auxiliary track will also prove a peculiarly
delicate matter; and, to prevent accidents, some means will have to be
devised that will permit the auxiliary wheels to engage with this
track very gradually. Still, these difficulties are perhaps not
insurmountable, and if M. Cottrau's ingenious arrangement meets with
final success in practice, it will find numerous applications.

* * * * *


The apparatus shown in the annexed cuts is capable of effecting a
certain amount of saving in the fuel of a generator, and of securing a
normal operation in a steam engine. If occasion does not occur to blow
off the motive cylinder frequently, the water that is carried over
mechanically by the steam, or that is produced through condensation in
the pipes, accumulates therein and leaks through the joints of the cocks
and valves. This is one of the causes that diminish the performance of
the motor.

[Illustration: BACHMANN'S STEAM DRIER. FIG. 1.]

The steam drier under consideration has been devised by Mr. Bachmann
for the purpose of doing away with such inconveniences. When applied to
apparatus employed in heating, for cooking, for work in a vacuum, it may
be affixed to the pipe at the very place where the steam is utilized, so
as to draw off all the water from the mixture.

As shown by the arrows in Fig 1, the steam enters through the orifice,
D, along with the water that it carries, gives up the latter at P, and
is completely dried at the exit, R. The partition, g, is so arranged
as to diminish the section of the steam pipe, in order to increase the
effect of the gravity that brings about the separation of the mixture.
The water that falls into the space, P, is exhausted either by means of
a discharge cock (Fig. 1), which gives passage to the liquid only, or
by the aid of an automatic purge-cock (Figs. 2 and 3), the locating of
which varies with the system employed. This arrangement is preferable
to the other, since it permits of expelling the water deposited in the
receptacle, P, without necessitating any attention on the part of the

* * * * *


The inventor says: "The automatic sprinkler is a device for
automatically extinguishing fires through the release of water by means
of the heat of the fire, the water escaping in a shower, which is thrown
in all directions to a distance of from six to eight feet. The sprinkler
is a light brass rose, about 11/2 inches diameter and less than two inches
high entire, the distributer being a revolving head fitted loosely to
the body of the fixed portion, which is made to screw into a half inch
tube connection. The revolution of the distributer is effected by the
resistance the water meets in escaping through slots cut at an angle
in the head. The distribution of water has been found to be the most
perfect from this arrangement. Now, this distributing head is covered
over with a brass cap, which is soldered to the base beneath with an
alloy which melts at from 155 to 160 degrees. No water can escape until
the cap is removed. The heat of an insignificant fire is sufficient to
effect this, and we have the practical prevention of any serious damage
or loss through the multiplication of the sprinkler.

of Sprinkler with Cap on.]

The annexed engravings represent the sprinkler at exact size for
one-half inch connection. Fig. 1 shows a section with the cap covering
over the sprinkler, and soldered on to the base. Fig. 2 shows the
sprinkler with the cap off, which, of course, leaves the water free to
run from the holes in fine spray in all directions. Fig. 1 shows the
base hollowed out so as to allow the heat to circulate in between the
pipe and the base of the sprinkler, thus allowing the heat to operate on
the _inside_ as well as on the outside of the sprinkler; thus, in case
of fire, it is very quickly heated through sufficiently to melt the
fusible solder. These sprinklers are all tested at 500 lb., consequently
they can never leak, and cannot possibly be opened, except by heat,
by any one. As the entire sprinkler is covered by a heavy brass cap,
soldered on, it cannot by any means be injured, nor can the openings in
the revolving head ever become filled with dust.

with cap off.]

It is so simple as to be easily understood by any one. As soon as the
sprinkler becomes heated to 155 degrees, the cap will become unsoldered,
and will then immediately be blown entirely off by the force of the
water in the pipes and sprinkler. These caps cannot remain on after
the fusible metal melts, if there is the least force of water. A man's
breath is sufficient to blow them off.

The arrangement commences with one or more main supply pipes, either fed
from a city water pipe or from a tank, as the situation will admit.
If desired, the tank need only be of sufficient size to feed a few
sprinklers for a short time, and then dependence must be placed upon
a pump for a further supply of water, if necessary. The tank, however
small, will insure the automatic and prompt working of the sprinklers
and alarm, and by the time the tank shall become empty the pumps can
be got at work. It is most desirable, however, in all cases to have an
abundant water supply without resorting to pumps, if it is possible.

In the main supply pipe or pipes is placed our patent alarm valve,
which, as soon as there is any motion of the water in the pipe, opens,
and moves a lever, which, by connecting with a steam whistle valve by
means of a wire, will blow the whistle and will continue to do so until
either the steam or the water is stopped. Tins constitutes the alarm,
and is positive in its motion. No water can possibly flow from the line
of pipes without opening this valve and blowing the whistle. We also put
in an automatic alarm bell when desired.

From the main pipe other pipes are run, generally lengthways of the
building, ten feet from each side and twenty feet apart. At every ten
feet on these pipes we place five feet of three-quarter inch pipe,
reaching each side, at the end of which is placed the sprinkler in an
elbow pointing toward the ceiling. This arrangement is as we place them
in all cotton and woolen mills, but may be varied to suit different
styles of buildings.

The sprinkler is made of brass, and has a revolving head, with four
slots, from which the water flies in a very fine and dense spray on
everything, and filling the air very completely for a radius of seven or
eight feet all around; thus rendering the existence of any fire in that
space perfectly impossible; and as the sprinklers are only placed ten
feet apart, and a fire cannot start at a greater distance than from five
to six feet from one or more of them, it is assured that all parts of a
building are fully protected.

Over each one of these sprinklers is placed a brass cap, which fits
closely over and passes below the base, where it is soldered on with a
fusible metal that melts as soon as it is heated to 155 degrees.

As soon as a fire starts in any part of a building, heat will be
generated and immediately rise toward the ceiling, and the sprinkler
nearest the fire will become heated in a very few moments to the
required 155 degrees, when the cap will become loosened and will be
forced off by the power of the water. The water will then be spread in
fine spray on the ceiling over the fire, also directly on the fire and
all around for a diameter of from fourteen to eighteen feet. This spray
has been fully tried, and it is found to be entirely sufficient to
extinguish any fire within its reach which can be made of any ordinary

As soon as the cap on any sprinkler becomes loosened by the heat of a
fire and is forced off, a current of water is produced in the main pipe
where the alarm valve is placed, and as the passage through it is dosed,
the water cannot pass without opening the valve and thus moving the
lever to which the steam whistle valve is attached; by this motion the
whistle valve is opened, and the whistle will blow until it is stopped
by some one."

* * * * *


[Footnote: Paper by Prof. Fr. Smigaglia, read at the reunion of the
Engineers and Architects of Rome.]

1. LET A and B be two fixed points and A C and C B two straight lines
converging at C and moving in their plane so as to always remain based
on this point (Fig. 1). The geometrical place of the positions occupied
by C is the circumference of the circle which passes through the three
points A, B, and C. Now let C F be a straight line passing through C. On
prolonging it, it will meet the circumference A C B I at a point I. If
the system of three converging--lines takes a new position A C' F B,
it is evident F' B' prolonged will pass through I, because the angles
[alpha] and [beta] are invariable for any position whatever of the

[Illustration: Fig. 1.]

2. In the particular case in which [alpha] = [beta] (Fig. 2), the point
I is found at the extremity of the diameter, and, consequently, for a
given distance A B, or for a given length C D, such point will be at its
maximum distance from C.

[Illustration: Fig. 2.]

3. This granted, it is easy to construct an instrument suitable for
drawing converging lines which shall prove useful to all those who have
to do with practical perspective. For this purpose it is only necessary
to take three rulers united at C (Fig. 3), to rest the two A C and C B
against two points or needles A and B, and to draw the lines with the
ruler C F, in placing the system (Sec. 1) in all positions possible. The
three rulers may be inclined in any way whatever toward each other, but
(Sec. 2) it is preferable to take the case where [alpha] = [beta].

[Illustration: Fig. 3.]

4. Let us suppose that the instrument passes from the position I to
position III (Fig. 4). Then the ruler C A will come to occupy the
position B A, from the fact that the instrument, continuing to move in
the same direction, will roll around the point B. It is well, then, to
manage so that the system shall have another point of support. For that
reason I prolong C B, take B C' = B C, draw C' I, and describe the
circumference--the geometrical place of the points C'. I take C' D = C'
B and obtain at D the position of the fixed point at which the needle
is inserted. In Fig. 4 are represented different positions of the
instrument; and it may be seen that all the points C C', and the centers
O O', are found upon the circumferences that have their center at I.

[Illustration: Fig. 4.]

5. The manipulation and use of the instrument are of the simplest
character. Being given any two straight converging lines whatever,
[alpha] [beta] and [gamma] [delta] (Fig. 5), in order to trace all the
others I insert a needle at A and arrange the instrument as seen at S. I
draw A B and A B', and from there carry it to S' in such a way that the
ruler being on [gamma] [delta], one of the resting rulers passes through
A. I draw the line C B which meets A B at the point B, the position
sought for the second needle. In order to draw the straight lines which
are under [alpha] [beta], it is only necessary to hold the needle A in
place and to fix one at B', making A B' = A B. In this case S" indicates
one of the positions of the instrument.

[Illustration: Fig. 5.]

6. The point A was chosen arbitrarily, but it is evident that that of
the needles depends on its distance from the point of convergence. Thus,
on taking A' instead of A in the case of Fig. 3, they approach, while
the contrary happens on choosing the point A". It is clear that the
different positions that a needle A may take are found on a straight
line which runs to the point of meeting.

7. If the instrument were jointed or hinged at C, that is to say, so
that we could at will modify the angle of the resting ruler, we might
make the position of the needles depend on such angle, and conversely.

8. Being given the length C I (Fig. 6), to establish the position of the
needles so that all the lines outside of the sheet shall converge at I.
To do this, it is well to determine C D, and then to draw the straight
line A D B perpendicular to C I, so as to have at A and B the points at
which the needles must be placed.

[Illustration: Fig. 6.]


___ ___
___ AD squared CD squared
CD x DI = AD squared. CD = ---- = --------- tang squared[alpha],

[TEX: CD \times DI = \overline{AD^2}.\ CD = \frac{\overline{AD^2}}{DI} =
\frac{\overline{CD^2}}{CI-CD} \tan^2 \alpha]


CD = ------------------ or CD = CI cos squared[alpha]. (1)
I + tang squared[alpha]

[TEX: CD = \frac{CI}{I + \tan^2 \alpha}\ \text{or}\ CD = CI \cos^2

9. If the instrument is jointed, the absolute values being

AD = \ / CD(CI - CD) , (2)

[TEX: AD = \sqrt{CD(CI - CD)}]

it suffices to take for CD a suitable value and to calculate AD.

If, for example, the value of C D is represented by C D', the instrument
takes the position A' C B', and the needles will be inserted at A' and
B' on the line A' D' B', which is perpendicular to C I.

10. If the position of the instrument, and consequently that of the
needles, has been established, and we wish to know the distance C I, we
will have

CI = ------------ ; (3)
cos squared[alpha]

[TEX: CI = \frac{CD}{\cos^2 \alpha}]

or, again,

AC squared
CI = ----- (4)

[TEX: CI = \frac{\overline{AC^2}}{CD'}]

11. In order to avoid all calculation, we may proceed thus: If I wish to
arrange the instrument so that C I represents a given quantity (Sec. 8),
I take (Fig. 7) the length Ci = CI/n, where n is any entire number

[Illustration: Fig. 7.]

In other terms, Ci is the reduction to the scale of CI.

I describe the circumference C b i a, and arrange the instrument as seen
in the figure, and measure the length C b.

It is visible that

C i 1 C b C d
----- = --- = ----- = ------; then C B = n.C b (5)
C I n C B C D

CD = n.C d; (6)

and, consequently, the position of the needles which are found at A and
B are determined.

12. The question treated in Sec. 10, then, is simply solved. In fact, on
describing the circumference C b i a with any radius whatever, I shall

n = -----; (7)
c b

and, consequently,

C I = n.C i (8)

13. As may be seen, the instrument composed of three firmly united
rulers is the simplest of all and easy to use. Any one can construct it
for himself with a piece of cardboard, and give the angle 2 [alpha] the
value that he thinks most suitable for each application. The greater
2 [alpha] is, the shorter is the distance at which we should put the
needles for a given point of meeting.

14 The jointed instrument may be constructed as shown in Figs 8, 9, and
10. The three pieces, A. B, and C, united by a pivot, O, in which there
is a small hole, are of brass or other metal. Rulers may be easily
procured of any length whatever. The instrument is Y-shaped. In the
particular case in which [alpha] = 180 deg. it becomes T-shaped, and serves
to draw parallel lines.

[Illustration: Fig. 8, Fig. 9, Fig. 10]

15. The instrument may be used likewise, as we have seen, to draw arcs
of circles of the diameter C I or of the radius A O = r, whose center o
falls outside the paper. The pencil will be rested on C. We may operate
as follows (Fig. 2): Being given the direction of the radii A O and B
O, or, what amounts to the same thing, the tangents to the curve at the
given points, A and B to be united, we draw the line A D and raise at
its center the perpendicular D C, which, prolonged, passes necessarily
through the center. It is necessary to calculate the length C D.

We shall have

___ ___ ___
CD (2r - CD) = AD squared.CD squared - 2r.CD + AD squared = o.

[TEX: CD (2r - CD) = \overline{AD^2}.\overline{CD^2} - 2r.CD +
\overline{AD^2} = o.]

/ ___
CD = r +- \ / r squared - AD squared .

[TEX: CD = r +- \sqrt{r^2 - \overline{AD^2}}.]

It is evident that the lower sign alone suits our case, for d < r;

/ ___
CD = r - \ / r squared - AD squared . (9)

[TEX: CD = r - \sqrt{r^2 - \overline{AD^2}}.]

Having obtained C, we put the instrument in the direction A B C. Then
each point of C F describes a circumference of the same center o.

16. If the distance of the points A and B were too great, then it
would be easy to determine a series of points belonging to the arc of
circumference sought (Fig. 4).

Being given C, the direction C I, and C I = R, on C I I lay off C E = d,
draw A E B perpendicularly, and calculate C A or A E. I shall have

d = (R - d) = AE squared;

[TEX: d = (R - d) = \overline{AE^2};]

or, as absolute value,

A E = \ / d (R - d) . (10)

[TEX: AE = \sqrt{d (R-d)}]

The instrument being arranged according to A C B, I prolong C B and take
B C' = B C, when C' will be one of the points sought. It will be readily
understood how, by repeating the above operations, but by varying the
value of d, we obtain the other intermediate points, and how we may
continue the operation to the right of C' with the process pointed out.

17. If the three rulers were three arcs of a large circle of a sphere,
the instrument might serve for drawing the meridians on such sphere.

18. If we imagine, instead of three axes placed in one plane and
converging at one point, a system of four axes also converging in one
point, but situated in any manner whatever in space, and if we rest
three of them against three fixed points, we shall be able to solve in
space problems analogous to those that have just been solved in a plane.
If we had, for example, to draw a spherical vault whose center was
inaccessible, we might adopt the same method.--_Le Genie Civil_.

* * * * *


[Footnote: A paper read before the Franklin Institute.]


In order to properly understand the requirements of an effective
feed-water purifier, it will be necessary to understand something of the
character of the impurities of natural waters used for feeding
boilers, and of the manner in which they become troublesome in causing
incrustation or scale, as it is commonly called, in steam boilers. All
natural waters are known to contain more or less mineral matter, partly
held in solution and partly in mechanical suspension. These mineral
impurities are derived by contact of the water with the earth's surface,
and by percolation through its soil and rocks. The substances taken
up in solution by this process consist chiefly of the carbonates
and sulphates of lime and magnesia, and the chloride of sodium. The
materials carried in mechanical suspension are clay, sand, and vegetable
matter. There are many other saline ingredients in various natural
waters, but they exist in such minute quantities, and are generally so
very soluble, that their presence may safely be ignored in treating of
the utility of boiler waters.

Of the above named salts, the carbonates of lime and magnesia are
soluble only when the water contains free carbonic acid.

Our American rivers contain from 2 to 6 grains of saline matter to the
gallon in solution, and a varying quantity--generally exceeding 10
grains to the gallon--in mechanical suspension. The waters of wells and
springs hold a smaller quantity in suspension, but generally carry a
larger percentage of dissolved salts in solution, varying from 10 to 650
grains to the gallon.

When waters containing the carbonates of lime and magnesia in solution
are boiled, the carbonic acid is driven off, and the salts, deprived of
their solvent, are rapidly precipitated in fine crystalline particles,
which adhere tenaciously to whatever surface they fall upon. With
respect to the sulphate of lime, the case is different. It is at best
only sparingly soluble in water, one part (by weight) of the salt
requiring nearly 500 parts of water to dissolve it. As the water
evaporates in the boiler, however, a point is soon reached where
supersaturation occurs, as the water freshly fed into it constantly
brings fresh accessions of the salt; and when this point is reached,
the sulphate of lime is precipitated in the same form and with the same
tenaciously adherent quality as the carbonates. There is, however,
a peculiar property possessed by this salt which facilitates its
precipitation, namely, that its solubility in water diminishes as the
temperature rises. This fact is of special interest, since, if properly
taken advantage of, it is possible to effect its almost complete removal
from the feed-water of boilers,

There is little difference in the solubility of the sulphate of lime
until the temperature has risen somewhat above 212 deg. Fahr., when it
rapidly diminishes, and finally, at nearly 300 deg., all of this salt,
held in solution at lower temperatures, will be precipitated when the
temperature has risen to that point. The following table[1] represents
the solubility of sulphate of lime in sea water at different

Temperature. Percentage Sulph.
Fahr. Lime held in Solution.
217 deg. 0.500
219 deg. 0.477
221 deg. 0.432
227 deg. 0.395
232 deg. 0.355
236 deg. 0.310
240 deg. 0.267
245 deg. 0.226
250 deg. 0.183
255 deg. 0.140
261 deg. 0.097
266 deg. 0.060
271 deg. 0.023
290 deg. 0.000

[Footnote 1: _Vide_ Burgh, "Modern Marine Engineering," page 176 _et
seq._ M. Couste, _Annales des Mines_ V 69. _Recherches sur Vincrustation
des Chaudieres a vapour_. Mr. Hugh Lee Pattison, of Newcastle-on-Tyne,
at the meeting of the Institute of Mechanical Engineers of Great
Britain, in August, 1880, remarked on this subject that "The solubility
of sulphate of lime in water diminishes as the temperature rises. At
ordinary temperatures pure water dissolves about 150 grains of sulphate
of lime per gallon; but at a temperature of 250 deg. Fahr., at which the
pressure of steam is equal to about 2 atmospheres, only about 40 grains
per gallon are held in solution. At a pressure of 3 atmospheres, and
temperature of 302 deg. Fahr., it is practically insoluble. The point
of maximum solubility is about 95 deg. Fahr. The presence of magnesium
chloride, or of calcium chloride, in water, diminishes its power of
dissolving sulphate of lime, while the presence of sodium chloride
increases that power. As an instance of the latter fact, we find a
boiler works much cleaner which is fed alternately with fresh water and
with brackish water pumped from the Tyne when the tide is high than one
which is fed with fresh water constantly."]

These figures hold substantially for fresh as well as for sea water, for
the sulphate of lime becomes wholly insoluble in sea water, or in soft
water, at temperatures comprised between 280 deg. and 300 deg. Fahr.

It appears from this that it is simply necessary to heat water up to a
temperature of 250 deg. in order to effect the precipitation of four fifths
of the sulphate of lime it may have contained, or to the temperature of
290 deg. in order to precipitate it entirely. The bearing of these facts on
the purification of feed-waters will appear further on. The explanation
offered to account for the gradually increasing insolubility of sulphate
of lime on heating, is, that the hydrate, in which condition it exists
in solution, is partially decomposed, anhydrous calcic sulphate
being formed, the dehydration becoming more and more complete as the
temperature rises. Sulphate of magnesia, chloride of sodium (common
salt), and all the other more soluble salts contained in natural waters
are likewise precipitated by the process of supersaturation, but owing
to their extreme solubility their precipitation will never be effected
in boilers; all mechanically suspended matter tends naturally to

Where water containing such mineral and suspended matter is fed to a
steam boiler, there results a combined deposit, of which the carbonate
of lime usually forms the greater part, and which remains more or less
firmly adherent to the inner surfaces of the boiler, undisturbed by the
force of the boiling currents. Gradually accumulating, it becomes harder
and thicker, and, if permitted to accumulate, may at length attain such
thickness as to prevent the proper heating of the water by any fire that
may be maintained in the furnace. Dr. Joseph G. Rogers, who has made
boiler waters and incrustations a subject of careful study, declares
that the high heats necessary to heat water through thick scale will
sometimes actually convert the scale into a species of glass, by
combining the sand, mechanically separated, with the alkaline salts. The
same authority has carefully estimated the non-conducting properties
of such boiler incrustations. On this point he remarks that the evil
effects of the scale are due to the fact that it is relatively a
nonconductor of heat. As compared with iron, its conducting power is
as 1 to 371/2, consequently more fuel is required to heat water in an
incrusted boiler than in the same boiler if clean. Rogers estimates that
a scale 1-16th of an inch thick will require the extra expenditure of
15 per cent. more fuel, and this ratio increases as the scale grows
thicker. Thus, when it is one-quarter of an inch thick, 60 per cent.
more fuel is needed; one-half inch, 112 per cent. more fuel, and so on.

Rogers very forcibly shows the evil consequences to the boiler from the
excessive heating required to raise steam in a badly incrusted boiler,
by the following illustration: To raise steam to a pressure of 90 pounds
the water must be heated to about 320 deg. Fahr. In a clean boiler of
one-quarter inch iron this may be done by heating the external surface
of the shell to about 325 deg. Fahr. If, now, one-half an inch of scale
intervenes between the boiler shell and the water, such is its quality
of resisting the passage of heat that it will be necessary to heat the
fire surface to about 700 deg., almost to a low red heat, to effect the same
result. Now, the higher the temperature at which iron is kept the more
rapidly it oxidizes, and at any heat above 600 deg. it very soon becomes
granular and brittle, and is liable to bulge, crack, or otherwise give
way to the internal pressure. This condition predisposes the boiler to
explosion and makes expensive repairs necessary. The presence of such
scale, also, renders more difficult the raising, maintaining, and
lowering of steam.

The nature of incrustation and the evils resulting therefrom having been
stated, it now remains to consider the methods that have been devised
to overcome them. These methods naturally resolve themselves into
two kinds, chemical and mechanical. The chemical method has two
modifications; in one the design is to purify the water in large tanks
or reservoirs, by the addition of certain substances which shall
precipitate all the scale-forming ingredients before the water is fed
into the boiler; in the other the chemical agent is fed into the boiler
from time to time, and the object is to effect the precipitation of the
saline matter in such a manner that it will not form solid masses of
adherent scale. Where chemical methods of purification are resorted to,
the latter plan is generally followed as being the least troublesome. Of
the many substances used for this purpose, however, some are measurably
successful; the majority of them are unsatisfactory or objectionable.

The mechanical methods are also very various. Picking, scraping,
cleaning, etc., are very generally resorted to, but the scale is so
tenacious that this only partially succeeds, and, as it necessitates
stoppage of work, it is wasteful. In addition to this plan, a great
variety of mechanical contrivances for heating and purifying the
feed-water, by separating and intercepting the saline matter on its
passage through the apparatus, have been devised. Many of these are of
great utility and have come into very general use. In the Western States
especially, where the water in most localities is heavily charged
with lime, these mechanical purifiers have become quite indispensable
wherever steam users are alive to the necessity of generating steam with

Most of these appliances, however, only partly fulfill their intended
purposes. They consist essentially of a chamber through which the
feed-water is passed, and in which it is heated almost to the boiling
point by exhaust steam from the engine. According to the temperature
to which the water is heated in this chamber, and the length of time
required for its passage through the chamber, the carbonates are more or
less completely precipitated, as likewise the matter held in mechanical
suspension. The precipitated matter subsides on shelves or elsewhere in
the chamber, from which it is removed from time to time. The sulphate
of lime, however, and the other soluble salts, and in some cases also a
portion of the carbonates that were not precipitated during the brief
time of passage through the heater, are passed on into the boiler.

Appreciating this insufficiency of existing feed-water purifiers to
effectually remove these dangerous saline impurities, the writer in
designing the feed-water heater now to be described paid special
attention to the separation of all matters, soluble and insoluble; and
he has succeeded in passing the water to the boilers quite free from any
substance which would cause scaling or coherent deposit. His attention
was called more particularly to the necessity of extreme care in this
respect, through the great annoyance suffered by steam users in the
Central and Western States, where the water is heavily charged with
lime. Very simple and even primitive boilers are here used; the most
necessary consideration being handiness in cleaning, and not the highest
evaporative efficiency. These boilers are therefore very wasteful, only
evaporating, when covered with lime scale, from two to three pounds of
water with one pound of the best coal, and requiring cleansing once
a week at the very least. The writer's interest being aroused, he
determined, if possible, to remedy these inconveniences, and accordingly
he made a careful study of the subject, and examined all the heaters
then in the market. He found them all, without exception, insufficient
to free the feed-water from the most dangerous of impurities, namely,
the sulphate and the carbonate of lime.

Taking the foregoing facts, well known to chemists and engineers, as the
basis of his operations, the writer perceived that all substances likely
to give trouble by deposition would be precipitated at a temperature of
about 250 deg. F.

His plan was, therefore, to make a feed-water heater in which the water
could be raised to that temperature before entering the boiler. Now, by
using the heat from the exhaust steam the water may be raised to between
208 deg. and 212 deg. F. It has yet to be raised to 250 deg. F.; and for this
purpose the writer saw at once the advantage that would be attained by
using a coil of live steam from the boiler. This device does not cause
any loss of steam, except the small loss due to radiation, since the
water in any case would have to be heated up to the temperature of the
steam on entering the boiler. By adopting this method, the chemical
precipitation, which would otherwise occur in the boiler, takes place
in the heater; and it is only necessary now to provide a filter, which
shall prevent anything passing that can possibly cause scale.

Having explained as briefly as possible the principles on which the
system is founded, the writer will now describe the details of the
heater itself.

In Figs. 1 and 2 are shown an elevation and a vertical section of
the heater. The cast-iron base, A, is divided into two parts by the
diaphragm, B. The exhaust steam enters at C, passes up the larger tubes,
D, which are fastened into the upper shell of the casting, returns by
the smaller tubes, E, which are inside the others, and passes away by
the passage, F. The inner tube only serves for discharge. It will be
seen at once that this arrangement, while securing great heating surface
in a small space, at the same time leaves freedom for expansion and
contraction, without producing strains. The free area for passage of
steam is arranged to be one and a half times that of the exhaust pipe,
so that there is no possible danger of back pressure. The wrought iron
shell, G, connecting the stand, A, with the dome, H, is made strong
enough to withstand the full boiler pressure. An ordinary casing, J,
of wood or other material prevents loss by radiation of heat. The
cold water from the pump passes into the heater through the injector
arrangement, K, and coming in contact with the tubes, D, is heated; it
then rises to the coil, L, which is supplied with steam from the boiler,
and thus becomes further heated, attaining there a temperature of from
250 deg. to 270 deg. F., according to the pressure in the boiler. This high
temperature causes the separation of the dissolved salts; and on the way
to the boiler the water passes through the filter, M, becoming thereby
freed from all precipitated matter before passing away to the boiler at
N. The purpose of the injector, K, and the pipe passing from O to K, is
to cause a continual passage of air or steam from the upper part of the
dome to the lower part of the heater, so that any precipitate carried up
in froth may be again returned to the under side of the filter, in order
more effectually to separate it, before any chance occurs of its passing
into the boiler.

[Illustration: FIG. 1.--Elevation. FIG. 2.--Vertical Section]

The filter consists of wood charcoal in the lower half and bone black
above firmly held between two perforated plates, as shown. After the
heater has been in use for from three to ten hours, according to the
nature of the water used, it is necessary to blow out the heater, in
order to clear the filter from deposit. To do this, the cock at R is
opened, and the water is discharged by the pressure from the boiler. The
steam is allowed to pass through the heater for some little time, in
order to clear the filter completely. After this operation, all is ready
to commence work again. By this means the filter remains fit for use for
months without change of the charcoal.

Where a jet condenser is used, either of two plans may be adopted. One
plan takes the feed-water from the hot well and passes the exhaust from
the feed pumps through the heater, using at the same time an increased
amount of coil for the live steam. By this means a temperature of water
is attained high enough to cause deposition, and at the same time to
produce decomposition of the oil brought over from the cylinders. The
other plan places the heater in the line of exhaust from the engine to
the condenser, also using a larger amount of coil. Both these methods
work well. The writer sometimes uses the steam from the coil to work the
feed pump; or, if the heater stands high enough, it is only necessary
to make a connection with the boiler, when the water formed by the
condensation of the steam runs back to the boiler, and thus the coil is
kept constantly at the necessary temperature.

In adapting the heater to locomotives, we were met with the difficulty
of want of space to put a heater sufficiently large to handle the
extremely large amount of water evaporated on a locomotive worked up to
its full capacity, being from 1,500 to 2,500 gallons per hour, or from
five hundred to one thousand h.p. We designed various forms of heaters
and tried them, but have finally decided on the one shown in the
engraving, Fig. 3, which consists of a lap welded tube, 13 inches
internal diameter, 12 feet long, with a cast-iron head which is divided
into two compartments or chambers by a diaphragm. Into this head are
screwed 60 tubes, one inch outside diameter and 12 feet long, which
are of seamless brass. These are the heating tubes, within which
are internal tubes for circulation only, which are screwed into the
diaphragm and extend to within a very short distance of the end of the
heating tube. The exhaust steam for heating is taken equally from both
sides of the locomotive by tapping a two-inch nipple with a cup shaped
extension on it in such a way as to catch a portion of the exhaust
without interfering with the free escape of the steam for the blast, and
without any back pressure, as it relieves the back pressure as much as
it condenses. The pipe from one side of the engine is connected with
the chamber into which the heating tubes are screwed, and is in direct
communication with them. The pipe from the other side is connected with
the chamber into which the circulating tubes are screwed. The beat of
the exhaust, working, as it does, on the quarters, causes a constant
sawing or backward and forward circulation of steam without any
discharge, and only the condensation is carried off.

The water is brought from the pump and discharged into the lower side of
the heater well forward, and passes around the heating tubes to the end,
when it is discharged into a pipe that carries it forward, either direct
to the check or into the purifier, which is located between the frames
under the boiler, and consists of a chamber in which are arranged a live
steam coil and a filter above the coil. The water coming in contact
with the coil, its temperature is increased from the temperature of the
exhaust, 210 deg., to about 250 deg. Fahr., which causes the separation of the
lime salts as before described, and it then passes through the filter
and direct to the boiler from above the filter, which is cleansed by
blowing back through it as before described.

One of these heaters lately tested showed a saving in coal of 22 per
cent, and an increase of evaporation of 1.09 pounds of water per pound
of coal.--_Franklin Journal_.

* * * * *


This precious statue forms the noble figure that adorns the monument
erected to the memory of the architect Carles Sada, who died in 1873.
This remarkable funereal monument is 20 feet high, the superior portion
consisting of a sarcophagus resting upon a level base. Upon this
sarcophagus is placed the statue of "La Architectura," which we
reproduce, and which well exemplifies the genius of the author and
sculptor, Juli Monteverde.--_La Ilustracio Catalana_.



* * * * *


The illustration shows a gardener's cottage recently erected at Downes,
Devonshire, the seat of Colonel Buller, V.C., C.B, C.M.G., from the
designs of Mr. Harbottle, A.R.I.B.A., of Exeter. It is built of red
brick and tile, the color of which and the outline of the cottage give
it a picturesque appearance, seen through the beautiful old trees in one
of the finest parks in Devonshire.--_The Architect_.

[Illustration: Gardener's Cottage at DOWNES for Colonel Buller V.C.,
C.B., C.M.G., _E.H. Harbottle Architect_]

* * * * *


Writing from Gilbertville, a Lewiston journal correspondent says:
Gilbertville, a manufacturing community in the town of Canton,
twenty-five miles from Lewiston, up the Androscoggin, is now a village
of over 500 inhabitants, where three years ago there was but a single
farmhouse. If a town had sprung into existence in a far Western
State with so much celerity, the phenomenon would not be considered
remarkable, perhaps; but growths of this kind are not indigenous to the
New England of the present era. Gilbertville has probably outstripped
all New England villages in the race of the past three years. It is only
one of the signs that old Maine is not dead yet.

Gilbert Brothers erected a saw mill here three years ago. A year later,
the Denison Paper Manufacturing Company, of Mechanic Falls, erected a
big pulp mill, which, also, the town voted to exempt from taxation for
ten years. The mills are valuable companions for each other. The pulp
mill utilizes all the waste of the saw mill. A settlement was speedily
built by the operatives. Gilbertville now boasts of a post-office, a
store, several large boarding houses, a nice school house, and over 500
inhabitants. The pulp mill employs seventy men. It runs night and day.
It manufactures monthly 350 cords of poplar and spruce into pulp. It
consumes monthly 500 cords of wood for fuel, 45 casks of soda ash,
valued at $45 per cask, nine car loads of lime, 24,000 pounds to the
car. It produces 1,000,000 pounds of wet fiber, valued at about $17,000,
monthly. The pay roll amounts to $3,500 per month.

The larger part of the stock used by the mill consists of poplar logs
floated down the Androscoggin and its tributaries. One thousand two
hundred cords of poplar cut in four-foot lengths are piled about the
mill; and a little further up the river are 5,000 cords more. The logs
are hauled from the river and sawed into lengths by a donkey engine,
which cuts about sixty cords per day, and pulls out fourteen logs at
a time. All the spruce slabs made by the saw mill are used with this
poplar. The wood is fed to a wheel armed with many sharp knives. It
devours a cord of wood every fifteen minutes. The four-foot sticks are
chewed into fine chips as rapidly as they can be thrust into the maw of
the chopper. They are carried directly from this machine to the top of
the mill by an endless belt with pockets attached. There are hatchways
in the attic floor, which open upon rotary iron boilers. Into these
boilers the chips are raked, and a solution of lime and soda ash is
poured over them.

This bath destroys all the resinous matter in the wood, and after
cooking five hours the chips are reduced to a mass of soft black pulp.
Each rotary will contain two cords of chips. After the cooking, the pulp
is dumped into iron tanks in the basement, where it is thoroughly washed
with streams of clean cold water. It is then pumped into a machine which
rolls it into broad sheets. These sheets are folded, and condensed by
a hydraulic press of 200 tons pressure. This process reduces its bulk
fifty per cent., and sends profuse jets of water flying out of it. The
soda ash, in which, mixed with lime and water, the chips are cooked, is
reclaimed, and used over and over again. The liquor, after it has been
used, is pumped into tanks on top of large brick furnaces. As it is
heated, it thickens. It is brought nearer and nearer the fire until it
crystallizes, and finally burns into an ash. Eighty per cent. of the ash
used is thus reclaimed. This process is an immense saving to the pulp
manufacturers. The work in the pulp mill is severe, and is slightly
tinged with danger.

Three thousand four hundred pounds of white ash to 2,100 pounds of lime
are the proportions in which the liquor in each vat is mixed. One does
not envy the lot of the stout fellows who crawl into the great rotaries
to stow away the chips. The hurry of business is so great that they
cannot wait for these boilers to cool naturally, after they have cooked
one batch, before putting in another. So they have a fan pump, to which
is attached a canvas hose, and with this blow cooling air currents into
the boiler, or "rotary," as they call it. The rotary is subjected to an
immense pressure, and is very stoutly made of thick iron plates, bolted

Describing the business as carried on at Mechanic Falls, the same paper
says: There are six of these mills on the three dams over which the
Little Androscoggin falls. These are the Eagle, the Star, the Diamond,
the Union, the pulp, and the super calendering mills. The Eagle and the
Star mills run on book papers of various grades. The Union mill runs on
newspaper. The old Diamond mill now prepares pulp stock. The pulp mill
does nothing but bleach the rag pulp and prepare for the machines in the
other mills; while the super-calendering mill gives the paper an extra
finish when ordered. There is practically but one series of processes by
which the paper is made in the various mills.

It is a curious fact that America is not ragged enough to produce the
requisite amount of stock for its own paper mills. Nearly all the rags
used by the Denison Mills (and by others in various parts of the country
as well) are imported from the old countries. All the rags first go
through the "duster." This is a big cylindrical shell of coarse wire
netting. It is rapidly revolved, while a screw running through its
center is turned in the opposite direction. Air currents are forced
through it by a power fan. The rags are continuously fed into one end of
this shell, which is about ten feet long and four feet in diameter. The
screw forces them through the whole length of the shell, while they are
kept buzzing around and subjected to breezes which blow thick clouds of
dirt and dust out of them. The air of the room is thick with European
and Asiatic earth. It is swept up in great rolls on the floor. The man
who operates the duster should have leather lungs.

Overhead is a long room where thirty girls are busily sorting the rags
for the various grades of papers. That the dusting machine is no more
perfect than a human machine is evinced by the murky atmosphere of this
room, by the particles that lodge in the throat of the visitor, and
by the frequent coughing of the sorters. They protect their hair with
turbans of veiling, occasionally decorated with a bit of bright color.
These turbans give the room the appearance of an industrious Turkish
harem. Short, sharp scythe blades, like Turkish scimeters, gleam above
all the girls' benches. When a sorter wishes to cut a rag, she pulls it
across the edge of this blade, and is not obliged to hunt for a pair of

Curious discoveries are frequently made in the rags. Old pockets,
containing small sums of money, are occasionally found. A foreign coin
valued at about $3 was found a few days ago. In the paper stock, quaint
and valuable old books or pictures are found often. One of the workmen
has a museum composed of curiosities found amid the rags and shreds of
paper. Rev. Dr. Bolles, of Massachusetts, makes an annual pilgrimage
to Mechanic Falls for the sake of the rare old pamphlets, books, and
engravings that he may dig out.

Stuffed in hogsheads, the rags are lowered from this room through
a hatchway, and are given a red hot lime bath. They are placed in
ponderous cylinders of boiler iron, which revolve horizontally in great
gears high above the floor. A mixture of lime and water, which has been
prepared in large brick vats, is poured over them. An iron door, secured
by huge bolts, is closed on them. The cylinder slowly turns around, and
churns the rags in the lime-juice twelve hours. This process is called
bleaching. When the rags come out they are far from white, however. They
are of a uniform dirty brown hue. But the colors have lost their gripe.
When the rags shall have been submitted to the grinding and washing in
pure water, as we shall see them presently, they are easily whitened.
The lime bath is the purgatory of the paper stock.

Before we go any further, we must see what becomes of those soft
and lop-sided bundles which are going into the mills. These contain
chemically prepared wood fiber, a certain percentage of which is used
in nearly all the papers made now. It gives the paper a greater body,
although its fiber is not so strong as that made of rags. The pulp comes
down from Canton in soft brown sheets. These are at once bleached. The
brown fiber is placed in a bath of cold water and chlorate of lime.
There it quietly rests till a sediment settles at the bottom of the
tank. At an opportune moment the workman pours in a copious libation
of boiling water. This causes the escape of the chlorine gas, which
destroys all the color in the pulp. In half an hour it comes out, a mass
of smoking fibers as white as a snow heap. The drainers into which it
goes are large pens with perforated tile floors. The pulp remains in the
drainers till it so dry it is handled with a pitchfork.

We are now ready to look at the beating machines, which have to perform
a very important part in paper making. These are large iron tanks with
powerful grinders revolving in them. Barrow loads of the brown rags are
dumped into them, and clear cold water is poured in. The grinders are
then started. They chew the rags into fine bits. They keep the mass
of rags and water circulating incessantly in the tanks. Clean water
constantly flows in and dirty water as constantly flows out. In the
course of six hours the rags are reduced to a perfectly white pulpy
mass. There is one mill, as we have said, devoted exclusively to the
reduction of rags to this white pulp. It is dried in drainers such as we
saw a few moments ago filled with the wood fiber.

There are other beating machines just like these, which perform a
slightly different service. Their function may be compared to that of an
apothecary's mortar or a cook's mixing dish. The white rag stock and the
white wood fiber are mixed in these, in the required proportions.
At this stage, the pulp is adulterated with China clay, to give it
substance and weight; here the sizing (composed of resin and sal soda)
is put in; oil of vitriol, bluing, yellow ocher, and other chemicals are
added, to whiten or to tint the paper. These beaters are much like
so many soup kettles. Upon the kind, number, and proportion of the
ingredients depends the nature of the product. The percentages of rag
pulp, wood pulp, clay, coloring, etc., used, depend upon the quality of
paper ordered.

After the final beating, the mixture descends into a large reservoir
called the "stuff chest," whence it is pumped to the paper machine. The
pulp is of the consistency of milk when it pours from the spout of
the pumps on the paper machine. The latter is a complicated series of
rollers, belts, sieves, blankets, pumps, and gears, one hundred feet
long. To describe it or to understand a description of it would require
the vocabulary and the knowledge of a scientist. The milky pulp first
passes over a belt of fine wire cloth, through which the water partly
drains. It is ingeniously made to glide over two perforated iron plates,
under which pumps are constantly sucking. You can plainly see the broad
sheet of pulp lose its water and gain thickness as it goes over these
plates. Broad, blanket-like belts of felt take it and carry it over and
between large rolling cylinders filled with hot steam. These dry and
harden it into a sheet which will support itself; and without the aid of
blankets it winds among iron rolls, called calenders, which squeeze it
and give it surface. It is wound upon revolving reels at the end of the

If a better surface or gloss is required, it is carried to the super
calendering mill, where it is steamed and subjected to a long and
circuitous journey up and down tall stands of calenders upon calenders.
The paper is cut by machines having long, winding knives which revolve
slowly and cut, on the scissors principle--no two points of the blade
bearing on the paper with equal pressure at once. Girls pack the sheets
on the tables as they fall from the cutters, and throw out the damaged
or dirtied sheets. A small black spot or hole or imperfection of any
sort is sufficient to reject a sheet. In some orders fifty per cent. of
the sheets are thrown out. There is no waste, as the damaged paper is
ground into pulp again. Having been cut, the paper must be counted and
folded. Then it is packed into bundles for shipment. The young lady who
does the counting and folding is the wonder of the mill. Giving the
sheets a twist with one hand so as to spread open the edges, she gallops
the fingers of the other hand among them; and as quickly as you or I
could count three, she counts twenty-four and folds the quire. She takes
four sheets with a finger and goes her whole hand and one finger more;
thus she gets twenty-four sheets. Long practice is required to do the
counting rapidly and accurately. Twenty-four sheets, no more and no
less, are always found in her quires.

Papers of different grades are made of different stock, but by the same
process. Some paper stock is used. This must be bleached in lime and
soda ash. There are powerful steam engines in the mills for use when
the water is low. There are large furnaces and boilers which supply the
steam used in the processes.

The Messrs. Denison employ 175 hands at Mechanic Falls. Their pay roll
amounts to about $5,000 per month. The mills produce 350,000 pounds of
paper per month and they ship several car-loads of prepared wood-pulp,
in excess of that required for their own use, weekly. The annual value
of their product is not far from $300,000. They use, for sundries,
each month, 300 tons of coal, 100 casks of common lime, 250 gallons of
burning-oil, 28,000 pounds of chlorate of lime, 3,700 pounds of soda
ash. 10,000 pounds of resin. 24,000 pounds of sal soda, 22,000 pounds of
oil of vitriol, 22,000 pounds of China clay, etc.

* * * * *


By M. YATES, Hon. Sec. Bread Reform League, London.

It is well recognized that defective mineral nutrition is an important
factor in the production of rickets and bad teeth, but as its
influence in predisposing toward tuberculous disease is not so clearly
ascertained, will you kindly allow public attention to be directed to
a statement which was discussed at the Social Science and Sanitary
Congresses and which, if confirmed by further scientific research,
indicates a simple means of diminishing consumption, which, as Dr.
William Fair, F.R.S., says, "is the greatest, the most constant, and the
most dreadful of all the diseases that affect mankind." In "Phosphates
in Nutrition," by Mr. M.F. Anderson, it is stated that although the
external appearances and general condition of a body when death has
occurred from starvation are very similar to those presented in
tuberculous disease, in starvation, "from wasting of the tissues, caused
by the combustion of their organic matter, there would be an apparent
_increase_ in the percentage proportion of mineral matter; on the other
hand, in tubercular disease, there would be a material _decrease_ in the
mineral matter as compared with the general wasting." Analyses, made
by Mr. Anderson, of the vascular tissues of patients who have died
of consumption, scrofula, and allied diseases, show "a very marked
deficiency in the quantity of inorganic matter entering into their
composition; this deficiency is not confined to the organs or tissues
which are apparently the seat of the disease, but in a greater or lesser
degree pervades the whole capillary system."

The observations of Dr. Marcet, F.R.S., show that in phthisis there is
a considerable reduction of the normal amount of phosphoric acid in the
pulmonary tissues; and it is very probable that there is a general drain
of phosphoric acid from the system.

This loss may be caused by the expectoration and night-sweats, or it may
also be produced by defective mineral nutrition, either from deficient
supply in the food, or from non assimilation. But, whatever causes this
deficiency, it is universally acknowledged that it is essential the food
should contain a proper supply of the mineral elements. If the body is
well nourished, the resisting force of the system is raised. Professor
Koch and others, who accept the germ theory of disease to its fullest
extent, state that the minute organisms of tubercular disease do not
occur in the tissues of healthy bodies, and that when introduced into a
living body their propagation and increase are greatly favored by a low
state of the general health.

Dr. Pavy, F.R.S., showed in his address on the "Dietetics of Bread" that
in white flour, instead of obtaining the 23 parts of mineral matter
to 100 parts of nitrogenous matter--which is the accepted ratio of
a standard diet--we should only get 4.20 parts of mineral matter.
Professor Church states that 1 lb. of white flour has only 49 grains of
mineral matter, while 1 lb. of whole wheat meal has 119 grains. Whole
wheat meal, besides containing other essential mineral elements,
has double the amount of lime, and nearly three times the amount of
phosphoric acid; so that if defective mineral nutrition in any way
predisposes to consumption, the adoption of wheat meal prepared in a
digestible and palatable form is of primary importance for those who are
unable to obtain the phosphates from high-priced animal foods.

Wheat meal has also great advantages for those who are able to afford
animal food, for, as Dr. Pavy stated, "It acts as a greater stimulant to
the digestive organs."

It is probably due to this stimulating property of wheat meal that
people who have adopted it find they can digest animal fat much better
than previously. If this is corroborated by general experience, it may
be of great benefit in aiding the system to resist tendencies toward
consumption and scrofula, for these diseases are generally accompanied
by loss of the power of assimilating fat. It is believed that a
deficiency of oleaginous matter is a predisposing cause of tuberculous
disease. An important prophylactic, therefore, against such maladies,
would be a general increase in the use of butter and other fatty foods.

There is such good reason to believe that a low state of nutrition
favors the development of tuberculous disease, that parents cannot be
too strongly urged to provide their children with a proper supply of
healthy, nourishing, and pure food (under which term must, of course, be
included pure air and pure water), for by so doing they may often arrest
consumptive tendencies, and thus would be diminished the ravages of
that fatal disease which, when once established, is "the despair of the
physician, and the terror of the public."

* * * * *


The capacity of the New York State fish farm at Caledonia is 6,000,000
fry a year. The recently issued report of the fish commissioners says
that this year the ponds will be worked to their full capacity.

The supply of spawn has been greater than could be hatched there, and
supplies were sent to responsible persons in every State in the Union to
be experimented with. At the date of issuing the report the supply of
stock fish at the hatchery embraced, it was estimated, a thousand salmon
trout, of weights ranging from four to twelve pounds; ten thousand
brook trout, from half a pound to two pounds in weight; thirty thousand
California mountain trout, weighing from a quarter of a pound to three
pounds; forty-seven hundred rainbow trout, of from a quarter of a
pound to two pounds' weight; and a large number of hybrids produced by
crossing and interbreeding of different members of the salmon tribe. In
this connection reference is made to the interesting fact that hybrids
of the fish family are not barren. Spawners produced by crossing the
male brook trout with the female salmon trout cast 72,000 eggs last
fall, which hatched as readily as the spawn of their progenitors. The
value of the stock of breeding fish at the hatchery is estimated at

The hatch of salmon trout this season was not far from 1,200,000, and
these will be distributed chiefly in the large lakes of the interior.
About a million little brook trout were produced. The commission doubts
whether much benefit has resulted from attempting to stock small streams
that have once been good trout waters, but the temperature of which has
been changed by cutting away the forest trees that overhung them. The
best results have been attained where the waters are of considerable
extent, especially those in and bordering on the wilderness in the
northern part of the State. The experiments with California trout, have
been very successful, and it is found that the streams most suitable for
them, are the Hudson, Genesee, Mohawk, Moose, Black, and Beaver rivers,
and the East and West Canada creeks. The commission hopes to hatch
6,000,000 or 8,000,000 shad this season at a cost of about $1,000.
Concerning German carp, the commissioners find that the water at
Caledonia is too cold for this fish, but think that carp would do well
in waters further south.

The commission awaits a more liberal appropriation of money before
beginning the work of hatching at the new State fish farm at Cold
Spring, on the north side of Long Island, thirty miles out from

* * * * *


Grant Allen, an English evolutionist, gives this imaginary picture
of our supposed ancestor: "We may not unjustifiably picture him to
ourselves as a tall and hairy creature, more or less erect, but with a
slouching gait, black faced and whiskered, with prominent, prognathous
muzza, and large, pointed canine teeth, those of each jaw fitted into
an interspace in the opposite row. These teeth, as Mr. Darwin suggests,
were used in the combats of the males. His forehead was no doubt low and
retreating, with bony bosses underlying the shaggy eyebrows, which
gave him a fierce expression, something like that of the gorilla. But
already, in all likelihood, he had learned to walk habitually erect, and
had begun to develop a human pelvis, as well as to carry his head more
straight on his shoulders. That some such animal must have existed seems
to me an inevitable corollary from the general principles of evolution
and a natural inference from the analogy of other living genera."

* * * * *


As well known, the method by which glass barometer tubes are made gives
them variable calibers. Not only do the different tubes vary in size,
but even the same tube is apt to have different diameters throughout
its length, and its sections are not always circular. Manufacturers
of barometers often have need to know exactly the dimensions of the
sections of these tubes, and to ascertain whether they are equal
throughout a certain length of tube, and this is especially necessary in
those instruments in which the surfaces of the sections of the reservoir
and tube must bear a definite ratio to one another. Having ascertained
that no apparatus existed for measuring the caliber of these and
anolagous tubes, and that manufacturers had been accustomed to make the
measurements by roundabout methods, Colonel Goulier has been led to
devise a small apparatus for the purpose, and which is shown in the
accompanying cuts.

[Illustration: GOULIER'S TUBE GAUGE. (Plan and longitudinal and
tranverse sections.)]

The extremity of a brass tube, T, 0.5 to 0.6 of a meter in length and
smaller in diameter than the tube to be gauged, is cut into four narrow
strips a few centimeters in length. The extremity of each of these
strips is bent toward the axis of the tube. Two of them, m and m',
opposite each other are made very flexible, and carry, riveted to their
extremities, two steel buttons, the heads of which, placed in the
interior, have the form of an obtuse quoin with rounded edge directed
perpendicular to the tube's axis. The other extremities of these buttons
are spherical and polished and serve as caliper points in the operation
of measuring. These buttons are given a thickness such that when the
edges of their heads are in contact, the external diameter of the tube
exceeds the distance apart of the two calibrating points by more than
one millimeter. But such distance apart is increased within certain
limits by inserting between the buttons a German silver wedge, L,
carried by a rod, t, which traverses the entire tube, and which is
maneuvered by a head, B, fixed to its extremity. This rod carries a
small screw, v, whose head slides in a groove, r, in the tube, so as
to limit the travel of the wedge and prevent its rotation. Beneath the
head, B, the rod is filed so as to give it a plane surface for the
reception of a divided scale. A corresponding slit in the top of the
tube carries the index, I, of the scale. The principal divisions of the
scale have been obtained experimentally, and traced opposite the index
when the calibrating points were exactly 7, 8, 9 etc., millimeters
apart. As the angle of the wedge is about one tenth, the intervals
between these divisions are about one centimeter. These intervals are
divided into ten parts, each of which corresponds to a variation in
distance of one tenth of a millimeter.

To calibrate a glass tube with this instrument, the tube is laid upon
the table, the gauge is inserted, and the buttons are introduced into
the section desired. The flat side of the head, B, being laid on the
table, arranges, as shown in the figure, the buttons perpendicular to
it. Then the measuring wedge is introduced until a stoppage occurs
through the contact of the buttons with the sides of the tube. Finally,
their distance apart is read on the scale. Such distance apart will be
the measure of a diameter or a chord of the tube's section, according as
the buttons have been kept in the diametral plane or moved out of it. In
order that the operator shall not be obliged to watch the position of
the line of calibrating buttons in obtaining the diameter, the following
arrangement has been devised: The sides of the measuring wedge are filed
off to a certain angle, and the ends of the corresponding strips, d and
d', are bent inward in the form of hooks, whose extremities always rest
on the faces of the directing wedges. The length of these hooks and the
angle of the wedge are such that the distance apart of the rounded backs
of the directing strips is everywhere less, by about one-thirtieth, than
that of the calibrating buttons. From this it will be seen that if the
wedge be drawn back, and inserted again after the tube has been turned,
we shall measure the diameter that is actually vertical. It becomes
possible, then, to determine the greatest and smallest diameters in a
few minutes; and, supposing the section elliptical, its area will be
obtained by multiplying the product of these two diameters by pi/4.

From the description here given it will be seen that Colonel Goulier's
apparatus is not only convenient to use, but also permits of obtaining
as accurate results as are necessary. Two sizes of the instrument are
made, one for diameters of from 7 to 10.5 mm., and the other for those
of from 10 to 15.5 mm. It is the former of these that is shown, of
actual size, in the cuts.

* * * * *


Back to Full Books