Scientific American Supplement, No. 481, March 21, 1885

Part 2 out of 2

messages; and so everybody pays for what work he does. It is payment by
results. The people like the arrangement, the company like it because they
make it pay, and the system works well. But I am bound to say that, up to
the present moment, Buffalo is the only city in the United States where
that method has been adopted.

The instruments used in the States are no better--in fact, in many cases
they are worse--than the instruments we use on this side of the Atlantic.
I have heard telephones in this country speak infinitely better than
anything that I have heard on the other side of the Atlantic. But they
transact their business in America infinitely better than we do; and there
is one great reason for this, which is, that in America the public itself
falls into the mode of telephone working with the energy of the telegraph
operator. They assist the telephone people in every way they can; they
take disturbances with a humility that would be simply startling to
English subscribers; and they help the workers of the system in every way
they can. The result is, that all goes off with great smoothness and
comfort. But the switch apparatus used in the American central offices is
infinitely superior to anything that I have ever seen over here, excepting
at Liverpool.

A new system has just been brought out, called the "multiple" system,
which has been very lately introduced. I saw it at many places, especially
at Indianapolis, at Boston, and at New York, where three exchanges were
worked by it with a rapidity that perfectly startled me. I took the times
of a great many transactions, and found that, from the moment a subscriber
called to the moment he was put through, only five seconds elapsed; and I
am told at Milwaukee, where unfortunately I could not go, but where there
is a friend of ours in charge, Mr. Charles Haskins, who is one of our
members, and he says he has brought down the rate of working to such a
pitch that they are able to arrange that subscribers shall be put through
in four seconds.

You will be surprised to learn that there are 986 exchanges at work in the
United States. There are 97,423 circuits; there are nearly 90,000 miles of
wire used for telephonic purposes; and the number of instruments that have
been manufactured amounts to 517,749. Just compare those figures with our
little experience on this side of the Atlantic. I have a return showing
the number of subscribers in and about New York, comprising the New Jersey
division, the Long Island division, Staten Island, Westchester, and New
York City, and the total amounts to 10,600 subscribers who are put into
communication with each other in the neighborhood of New York alone; and
here in England we can only muster 11,000. There are just as many
subscribers probably at this moment in New York and its neighborhood as we
have in the whole of the United Kingdom.

I am sorry to delay you so long. I have very few more points to bring
before you. I spoke only last week so much about the electric light that I
have very little to say on that point. High-tension currents are used for
electric lighting in America, and all wires are carried overhead along the
streets. A more hideous contrivance was probably never invented since the
world was created than the system of carrying wires overhead through the
magnificent streets and cities in America. They spend thousands upon
thousands of pounds in beautifying their cities with very fine buildings,
and then they disfigure them all by carrying down the pavements the most
villainous-looking telegraph posts that ever were constructed. The
practice is carried to such an extent, that down Broadway in New York
there are no less than six distinct lines of poles; and through the city
of New York there are no less than thirty-two separate and distinct
companies carrying all their wires through the streets of the city. How
the authorities have stood it so long I cannot make out. They object to
underground wires--why, one cannot tell. It is something like taking a
horse to the pond--you cannot make him drink. So it is with these
telephone companies: the public of America and the Town Councils have been
trying to force the telephone and telegraph companies to put their wires
underground, but they are the horses that are led to the pool, and they
will not drink. It is said that the Town Council of Philadelphia have
issued most stringent orders that on the first of January next, men with
axes and tools are to start out and cut down every pole in the city. It is
all very well to threaten; but my impression is that any member of Town
Council or any individual of Philadelphia who attempts to do such a thing
will be lynched by the first telephone subscriber he meets.

This practice of running overhead wires has great disadvantages when the
wires are used for electric-lighting purposes as well as for ordinary
telephone or telegraph purposes. No doubt the high-tension system can be
carried out overhead with economy; but where overhead wires carrying these
heavy currents exist in the neighborhood of telephone circuits, there is
every possible liability to accident; and in my short trip I came across
seven distinct cases of offices being destroyed by fire, of test boxes
being utterly ruined, of a whole house being gutted, and of various
accidents, all clearly traceable to contacts arising from the falling of
overhead wires, charged with high-tension current, upon telegraph and
telephone wires below. The danger is so great and damage so serious that,
at Philadelphia, Mr. Plush, the electrician to the Telephone Company, has
devised this exceedingly pretty cut-out. It is a little electro-magnetic
cut-out that breaks the telephone circuit whenever a current passes into
the circuit equal to or more than an ampere. The arrangement works with
great ease. It is applied to every telephone circuit simply, to protect
the telephone system from electric light wires, that ought never to be
allowed anywhere near a telephone circuit.

Fire-alarms are used in America; but in England, also, the fire systems of
Edward Bright, Spagnoletti, and Higgins have been introduced, and in that
respect we are in very near the same position as our friends on the other
side of the Atlantic. Some members present may remember that, when I
described my last visit to America, I mentioned how in Chicago the
fire-alarm was worked by an electric method, and I told you a story then
that you did not believe, and which I have told over and over again, but
nobody has yet believed me, and I began to think that I must have made a
mistake somewhere or other. So I meant, when at Chicago this time, to see
whether I had been deceived myself. There was very little room for
improvement, because, as I told you before, they had very near reached
perfection. This is what they did: At the corner of the street where a
fire-alarm box is fixed, a handle is pulled down, and the moment that
handle is released a current goes to the fire-station; it sounds a gong to
call the attention of the men, it unhitches the harness of the horses, the
horses run to their allotted positions at the engine, it whips the clothes
off every man who is in bed, it opens a trap at the bottom of the bed and
the men slide down into their positions on the engine. The whole of that
operation takes only six seconds. The perfection to which fire-alarm
business has been brought in the States is one of the most interesting
applications of electricity there.

Of course during this visit I waited on Mr. Edison. Many of you know that
a difference took place between Mr. Edison and myself, and I must confess
that I felt a little anxiety as to how I should be received on the other
side. It is impossible for any man to receive another with greater
kindness and attention than Mr. Edison received me. He took me all over
his place and showed me everything, and past differences were not referred
to. Mr. Edison is doing an enormous amount of work in steadily plodding
away at the electric light business. He has solved the question as far as
New York is concerned and as far as central station lighting is concerned;
and all we want on this side is to instill more confidence into our
capitalists, to try and induce them to unbutton their pockets and give us
money to carry out central lighting here.

I met another very distinguished electrician--a man who has hid his light
under a bushel--a man whose quiet modesty has kept him very much in the
background, but who really has done as much work as any body on that side
of the Atlantic, and few have done more on this--and that is Mr. Edward
Weston. He is an Englishman who has established himself in New York. He
has been working steadily for years at his laboratory, and works and
produces plant with all the skill and exactitude that the electrician or
mechanic could desire.

Another large factory I went over was that of the Western Electric Company
of Chicago, which is the largest manufactory in the States. That company
has three large factories. While I was there, the manager, just as a
matter of course, handed me over a message which contained an order for
330 arc lamps and for twenty-four dynamo machines. He was very proud of
such an order, but he tried to make me believe that it was an every-day

There are no less than 90,000 arc lamps burning in the States every day.

The time has passed very rapidly. I have only just one or two more points
to allude to. I think I ought not to conclude without referring to the
more immediate things affecting travelers generally and electricians in
particular. It is astounding to come across the different experiences
narrated by different men who have been on the other side of the Atlantic.
One charming companion that we had on board the Parisian has been
interviewed, and his remarks appeared in the _Pall Mall Gazette_ of
Tuesday last, December 9th. There he gave the most pessimist view of life
in the United States. He said they were a miserable race--thin, pale faced
and haggard, and rushed about as though they were utterly unhappy; and the
account our friend gave of what he saw in the United States evidently
shows that the heat that did not affect some of us so very much must have
produced upon Mr. Capper a most severe bilious attack. Well, his
experiences are not mine. Throughout the whole States I received
kindnesses and attentions that I can never forget. I had the pleasure of
staying in the houses of most charming people. I found that whenever you
met an educated American gentleman there was no distinction to be drawn
between him and an English gentleman. His ways of living, his modes of
thought, his amusements, his entertainments, are the same as ours; there
is no difference whatever to be found. In Mr. Capper's case I can readily
imagine that he spent most of his time in the halls of hotels, and there
you do see those wild fellows rushing about; they convert the hall of the
hotel into a mere stock exchange, and look just as uncomfortable as our
"stags" who run about Capel Court. You may just as well enter a
betting-ring and come away with the impression that the members represent
English society, or that that is the most refined manner in which English
gentlemen enjoy themselves.

Well, gentlemen, there are just as exceptional peculiarities here as on
the other side of the water. The Americans are the most charming people on
this earth. When we enter their houses and come to know them, they treat
us in a way that cannot be forgotten. I noticed a very great change since
I was in America before. Whether it is a greater acquaintance with them or
not I cannot say, but there is an absence of that which we can only
express by a certain word called "cockiness." It struck me at one time
that there was a good deal of cockiness on that side of the Atlantic, that
has entirely disappeared. Constant intercourse between the two countries
is gradually bringing out a regular unanimity of feeling and the same mode
of thought.

But there are some things in which the Americans are a little lax,
especially in their history. At one of their exhibitions that I visited,
for instance, there was a placard put up--

"The steed called Lightning, say the Fates,
Was tamed in the United States.
'Twas Franklin's hand that caught the horse;
'Twas harnessed by Professor Morse."

Now, considering that Franklin made his discovery in 1752, and the United
States were not formed till about thirty years afterward, it is rather
"transmogrifying" history to say the lightning was tamed in the United

Again, where the notice about Professor Morse was put, they say that the
instrument was invented by Morse in 1846, while alongside it is shown the
very slip which sent the message, dated 1844; so that the slip of the
original message sent by Morse was sent by his instrument two years before
it was invented.

Again, that favorite old instrument of ours which we are so proud of, the
hatchment telegraph of Cooke and Wheatstone, invented in 1837, was labeled
"Whetstone and Cook, 1840," so while I am sorry to say they are loose in
their history, they are tight in their friendships, and all the visitors
receive the warmest possible welcome from them generally, and especially
so from every member of our Society belonging to the States.

* * * * *



This building, which is situated at the corner of the Groote Market and
the Hang, is one of the oldest houses in Rotterdam, besides being one of
the most interesting from a historical point of view. There is a tradition
which states that when the city was invaded and pillaged by the Spaniards,
who in accordance with their usual custom, proceeded to put the
inhabitants to the sword, without regard to age or sex, a large number of
the leading citizens took refuge within the building, and having secured
and barricaded the entrance, they killed a kid and allowed the blood to
flow beneath the door into the street; seeing which the soldiery concluded
that those inside had already been massacred, and without troubling to
force an entry passed on, leaving them unmolested. Here the unhappy
citizens remained for three days without food, by which time the danger
had passed away, and they were enabled to effect their escape. It is from
this incident that the building takes its name. The house is built in a
species of irregular bond with bricks of varying lengths, the strings,
labels, copings, etc., being in stone. The upper portion remains in pretty
much the same condition as it existed in the 16th century, but is much
disfigured by modern paint, which has been laid over the whole of the
exterior with no sparing hand. Within the last few years the present shop
windows facing the Groote Market have been put up and various slight
alterations made to the lower part of the building to suit the
requirements of the present occupiers. The drawing has been prepared from
detail sketches made on the spot.--_W.E. Pinkerton, in Building News._

* * * * *


The origin of coal, that combustible which is distributed over the earth
in all latitudes, from the frozen regions of Greenland to Zambesi in the
tropics, utilized by the Chinese from the remotest antiquity for the
baking of pottery and porcelain, employed by the Greeks for working iron,
and now the indispensable element of the largest as well of the smallest
industries, is far from being sufficiently clear. The most varied
hypotheses have been offered to explain its formation. To cite them all
would not be an easy thing to do, and so we shall recall but three: (1) It
has been considered as the result of eruptions of bitumen coming from the
depths, and covering and penetrating masses of leaves, branches, bark,
wood, roots, etc., of trees that had accumulated in shallow water, and
whose most delicate relief and finest impressions have been preserved by
this species of tar solidified by cooling. (2) It has also been considered
as the result of the more or less complete decomposition of plants under
the influence of heat and dampness, which has led them to pass
successively through the following principal stages: _peat, lignite,
bituminous coal, anthracite_. (3) Finally, while admitting that the
decomposition of plants can cause organic matter to assume these different
states, other scientists think that it is not necessary for such matter to
have been peat and lignite in order to become coal, and that at the
carboniferous epoch plants were capable of passing directly to the state
of coal if the conditions were favorable; and, in the same way, in the
secondary and tertiary epochs the alteration of vegetable tissues
generally led to lignite, while now they give rise to peat. In other
words, the nature of the combustible formed at every great epoch depended
upon general climatic conditions and local chemical action. Anthracite and
bituminous coal would have belonged especially to primary times, lignites
to secondary and tertiary times, and peat to our own epoch, without the
peat ever being able to become lignites or the latter coal.

As for the accumulation of large masses of the combustible in certain
regions and its entire absence in others belonging to the same formation,
that is attributed, now to the presence of immense forests growing upon a
low, damp soil, exposed to alternate rising and sinking, and whose debris
kept on accumulating during the periods of upheaval, under the influence
of a powerful vegetation, and now to the transportation of plants of all
sorts, that had been uprooted in the riparian forests by torrents and
rivers, to lakes of wide extent or to estuaries. Not being able to enter
in this place into the details of the various hypotheses, or to thoroughly
discuss them, we shall be content to make known a few facts that have been
recently observed, and that will throw a little light upon certain still
obscure points regarding the formation of coal.

(1) According to the first theory, if the impressions which we often find
in coal (such as the leaves of Cordaites, bark of Sigillarias and
Lepidodendrons, wood of Cordaites, Calamodendrons, etc.) are but simple
and superficial mouldings, executed by a peculiar bitumen, formerly fluid,
now solidified, and resembling in its properties no other bitumen known,
we ought not to find in the interior any trace of preservation or any
evidence of structure. Now, upon making preparations that are sufficiently
thin to be transparent, from coal apparently formed of impressions of the
leaves of Cordaites, we succeed in distinguishing (in a section
perpendicular to the limb) the cuticle and the first row of epidermic
cells, the vascular bundles that correspond to the veins and the bands of
hypodermic libers; but the loose, thin-walled cells of the mesophyllum are
not seen, because they have been crushed by pressure, and their walls
touch each other. The portions of coal that contain impressions of the
bark of Sigillaria and Lepidodendron allow the elongated, suberose tissue
characteristic of such bark to be still more clearly seen.

Were we to admit that the bitumen was sufficiently fluid to penetrate all
parts of the vegetable debris, as silica and carbonates of lime and iron
have done in so many cases, we should meet with one great difficulty. In
fact, the number of fragments of coal _isolated_ in schists and sandstone
is very large, and _without any communication_ with veins of coal or of
bitumen that could have penetrated the vegetable. We cannot, then, for an
instant admit such a hypothesis. Neither can we admit that the penetration
of the plants by bitumen was effected at a certain distance, and that they
have been transported, after the operation, to the places where we now
find them, since it is not rare to find at Commentry trunks of
Calamodendrons, Anthropitus, and ferns which are still provided with roots
from 15 to 30 feet in length, and the carbonized wood of which surrounds a
pith that has been replaced by a stony mould. The fragile ligneous
cylinder would certainly have been broken during such transportation.

The carbonized specimens were never fluid or pasty, since there are some
that have left their impressions with the finest details in the schists
and sandstones, but none of the latter that has left its traces upon the
coal. The surface of the isolated specimens is well defined, and their
separation from the gangue (which has never been penetrated) is of the
easiest character.

The facts just pointed out are entirely contrary to the theory of the
formation of coal by way of eruption of bitumen.

(2) The place occupied by peats, lignites, and bituminous and anthracite
coal in sedimentary grounds, and the organic structure that we find less
and less distinct in measure as we pass from one of these combustibles to
one more ancient, have given rise to the theory mentioned above, viz.,
that vegetable matter having, under the prolonged action of heat and
moisture, experienced a greater and greater alteration, passed
successively through the different states whose composition is indicated
in the following table:

H. C. O. N. Coke. Ashes. Density.
Peat 5.63 57.03 29.67 2.09 ---- 5.58 ----
Lignite 5.59 70.49 17.2 1.73 49.1 4.99 1.2
Bitumin. coal 5.14 87.45 4 1.63 68 1.78 1.29
Anthracite 3.3 92.5 2.53 ---- 89.5 1.58 1.3

Aside from the fact that anthracite is not met with solely in the lower
coal measures, but is found in the middle and upper ones, and that
bituminous coal itself is met with quite abundantly in the secondary
formations, and even in tertiary ones, it seems to result from recent
observations that if vegetable matter, when once converted into lignites,
coal, etc., be preserved against the action of air and mineral waters by
sufficient thick and impermeable strata of earth, preserves the chemical
composition that it possessed before burial. The coal measures of
Commentry, as well as certain others, such as those of Bezenet, Swansea,
etc., contain quite a large quantity of coal gravel in sandstone or
argillaceous rocks. These fragments sometimes exhibit a fracture analogous
to that of ordinary coal, with sharp angles that show that they have not
been rolled; and the sandstone has taken their exact details, which are
found in hollow form in the gangue. In other cases these fragments exhibit
the aspect of genuine shingle or rolled pebbles. These pebbles of coal
have not been misshapen under the pressure of the surrounding sandstone,
nor have they shrunk since their burial and the solidification of the
gangue, for their surface is in contact with the internal surface of their
matrix. Everything leads to the belief that they were extracted from
pre-existing coal deposits that already possessed a definite hardness and
bulk, at the same time as were the gravels and sand in which they are
imprisoned. It became of interest, then, to ascertain the age to which the
formation of these fragments might be referred, they being evidently more
ancient than those considered above, which, as we have seen, could not
have been transported in this state on account of their dimensions and the
fragility of made coal. Thanks to the kindness of Mr. Fayol, we have been
enabled to make such researches upon numerous specimens that were still
inclosed in their sandstone gangue and that had been collected in the coal
strata of Commentry. In some of their physical properties they differ from
the more recent isolated fragments and from the ordinary coal of this
deposit. They are less compact, their density is less, and a thin film of
water deposited upon their surface is promptly absorbed, thus indicating a
certain amount of porosity. Their fracture is dull and they are striped
with shining coal, and can be more easily sliced with a razor.

From a fresh fracture, we find by the lens, or microscope, that some of
them are formed of ordinary coal, that is, composed of plates of variable
thickness, brilliant and dull, with or without traces of organization, and
others of divers bits of wood whose structure is preserved. When reduced
to thin, transparent plates, these latter show us the organization of the
wood of _Arthropitus, Cordaites_, and _Calamodendron_, and of the petioles
of _Aulacopteris_, that is to say, of the ligneous and arborescent plants
that we most usually meet with in the coal measures of Commentry in the
state of impression or of coal.

In a certain number of specimens the diminution in volume of the tracheae
is less than that that we have observed in the same organs of
corresponding genera. The quantity of oxygen and hydrogen that they
contain is greater, and seems to bring them near the lignites.

We cannot attribute these differences to the nature of the plants
converted into coal, since we have just seen that they are the same in the
one case as in the other. Neither does time count for anything here,
since, according to accepted ideas, the burial having been longer, the
carbonization ought to have been more perfect, while the contrary is the

If we admit (1) that vegetable remains alter more and more through
maceration in ordinary water and in certain mineral waters; (2) that,
beginning with their burial in sufficiently thick strata of clay and sand,
their chemical composition scarcely varies any further; and (3) that these
are important changes only as regards their physical properties, due to
loss of water and compression, we succeed quite easily in learning what
has occurred.

In fact, when, as a consequence of the aforesaid alteration, the vegetable
matter had taken the chemical composition that we find in the less
advanced coal of the pebbles, it was in the first place covered with sand
and protected against further destruction, and it gradually acquired the
physical properties that we now find in it. At the period that channels
were formed, the coal was torn from the beds in fragments, and these
latter were rolled about for a time, sometimes being broken, and then
covered anew, and this too at the same time as were the plants less
advanced in composition that we meet with at the same level. These latter,
being like them protected against ulterior alteration, we now find less
advanced in carbonization (notwithstanding their more ancient origin) than
the other vegetable fragments that were converted into coal after them,
but that were more thoroughly altered at the time of burial.

There are yet a few other important deductions to be made from the
foregoing facts: (1) the same coal basin may, at the same level, contain
fragments of coal of very different ages; (2) its contour may have been
much modified owing to the ravines made by the water which transported the
ancient parts into the lowest regions of the basin; and (3) finally, since
the most recent sandstones and schists of the same basin may contain coal
which is more ancient, but which is formed from the same species of plants
that we find at this more recent level, we must admit that the conversion
of the vegetable tissues into coal was relatively rapid, and far from
requiring an enormous length of time, as we are generally led to believe.

If, then, lignites have not become soft coal, and if the latter has not
become anthracite, it is not that time was wanting, but climatic
conditions and environment. Most analyses of specimens of coal have been
made up to the present with fragments so selected as to give a mean
composition of the mass; it is rare that trouble has been taken to select
bits of wood, bark, etc., of the same plant, determined in advance by
means of thin and transparent sections in order to assure the chemist of
the sole origin and of the absolute purity of the coal submitted to
analysis. This void has been partially fitted, and we give in the
following table the results published by Mr. Carnot of analyses made of
different portions of plants previously determined by us:

Carbon Hydrogen Oxygen Nitrogen
1. Calamodendron (5 specimens) 82.95 4.78 11.89 0.48
2. Cordaites (4 specimens) 82.94 4.88 11.84 0.44
3. Lepidodendron (3 specimens) 83.28 4.88 11.45 0.39
4. Psaronius (4 specimens) 81.64 4.80 13.11 0.44
5. Ptychopteris (1 specimen) 80.62 4.85 14.53
6. Megaphyton (1 specimen) 83.37 4.40 12.23

As seen from this table, the elementary composition of the various
specimens is nearly the same, notwithstanding that the selection was made
from among plants that are widely separated in the botanical scale, or
from among very different parts of plants. In fact, with Numbers 1 and 2
the analysis was made solely of the wood, and with No. 3 only of the
prosenchymatous and suberose parts of the bark. Here we remark a slight
increase in carbon, as should be the case. With No. 4 the analysis was of
the roots and the parenchymatous tissue that descends along the stem, and
with No. 6 of the bark and small roots. One will remark here again a
slight increase in the proportion of carbon, as was to be foreseen. The
elementary composition found nearly corresponds with that of the coal
taken from the large Commentry deposit.

Carbon. Hydrogen. Oxygen and
Regnault 82.92 5.39 11.78
Mr Carnot 83.21 5.57 11.22

Although the chemical composition is nearly the same, the manner in which
the different species or fragments of vegetables behave under distillation
is quite different.

In fact, according to Mr. Carnot, the plants already cited furnish the
following results on distillation:

Volatile Fixed Coke.
matters. residue.
Calamodendron 35.5 64.7 Well agglomerated.
Cordaites 42.1 57.8 Quite porous.
Lepidodendron 34.7 55.3 Well agglomerated.
Psaronius 29.4 60.5 Slightly porous.
Ptychopteris 39.4 60.5
Megaphyton 35.5 64.5 Well agglomerated.
Coal of the Great Bed 40.5 59.5 Slightly porous.

These differences in the proportions of volatile substances, of fixed
residua, and of density in the coke obtained seem to be in harmony with
the primitive organic nature of the carbonized tissues. We know, in fact,
that the wood of the Calamodendrons is composed of alternately radiating
bands formed of ligneous and thick walled prosenchymatous tissue, while
the wood of Cordaites, which is less dense, recalls that of certain
coniferae of the present day (Araucariae).

We have remarked above that the portions of Lepidodendron analyzed
belonged to that part of the bark that was considerably thickened and
lignefied. So too the portion of the Megaphyton that was submitted to
distillation was the external part of the hard bark, formed of hypodermic
fibers and traversed by small roots. The Psaronius, on the contrary, was
represented by a mixture of roots and of parenchymatous tissue in which
they descend along the trunk.

It results from these remarks that we may admit that those parts of the
vegetable that are ordinarily hard, compact, and profoundly lignefied
furnish a compact coke and relatively less volatile matter, while the
tissues that are usually not much lignefied, or are parenchymatous, give a
bubbly, porous coke and a larger quantity of gas. The influence of the
varied mode of grouping of the elements in the primitive tissues is again
found, then, even after carbonization, and is shown by the notable
differences in the quantities and physical properties of the products of

The elementary chemical composition, which is perceptibly the same in the
specimens isolated in the sandstones and in those taken from the great
deposit, demonstrates that the difference in composition of the
environment serving as gangue did not have a great influence upon the
definitive state of the coal, a conclusion that we had already reached
upon examining the structure and properties of the coal pebbles.

We may get an idea of the nearly similar composition of the coal produced
by very different plants or parts thereof, in remarking that as the cells,
fibers, and vessels are formed of cellulose, and some of them isomeric,
the difference in composition is especially connected with the contents of
the cells, canals, etc., such as protoplasm, oils, resins, gums, sugars,
and various acids, various incrustations, etc. After the prolonged action
of water that was more or less mineralized and of multiple organisms,
matters that were soluble, or that were rendered so by maceration, were
removed, and the organic skeletons of the different plants were brought to
a nearly similar centesimal composition representing the carbonized
derivatives of the cellulose and its isomers. The vegetable debris thus
transformed, but still resistant and elastic, were the ones that were
petrified in the mineral waters or covered with sand and clay. Under the
influence of gradual pressure, and of a desiccation brought about by it,
and by a rising of the ground, the walls of the organic elements came into
contact, and the physical properties that we now see gradually made their

The waters derived from a prolonged steeping of vegetables, and charged
with all the soluble principles extracted therefrom, have, after their
sojourn in a proper medium, deposited the carbonized residua that have
themselves become soluble, and have there formed masses of combustibles of
a different composition from that resulting from the skeletons of plants,
such as _cannel coal, pitch coal, boghead_, etc.

A thin section of a piece of Commentry cannel coal shows that this
substance consists of a yellowish-brown amorphous mass holding here and
there in suspension very different plant organs, such as fragments of
Cordaites, leaves, ferns, microspores, macrospores, pollen grains,
rootlets, etc., exactly as would have done a gelatinous mass that upon
coagulating in a liquid had carried along with it all the solid bodies
that had accidentally fallen into it and that were in suspension.

It is evident (as we have demonstrated) that other cannel coals may show
different plant organs, or even contain none at all, their presence
appearing to be accidental. The composition itself of cannel coal must be,
in our theory, connected with the chemical nature of the materials from
whence it is derived, and that were first dissolved and then became
insoluble through carbonization. Several preparations made from Australian
(New South Wales), Autun, etc., boghead have shown us merely a
yellowish-brown amorphous mass holding in suspension lens-shaped or
radiating floccose masses which it is scarcely possible to refer to any
known vegetable organism.

Among the theories that we have cited in the beginning, the one that best
agrees with the facts that we have pointed out is the third, which would
admit, then, two things in the formation of coal. The first would include
the different chemical reactions which cannot yet be determined, but which
would have brought the vegetable matter now to the state of soft coal
(with its different varieties), and now to the state of anthracite. The
second would comprehend the preservation, through burial, of the organic
matter in the stage of carbonization that it had reached, and as the
result of compression and gradual desiccation, the development of the
physical properties that we now find in the different carbonized

We annex to this article a number of figures made from preparations of
various coals. These preparations were obtained by making the fragments
sufficiently thin without the aid of any chemical reagent, so as to avoid
the reproach that things were made to appear that the coal did not
contain. This slow and delicate method is not capable of revealing all the
organisms That the carbonaceous substance contains, but, per contra, one
is riot absolutely sure of the pre-existence of everything that resembles
organs or fragments of such that he distinguishes therein by means of the

Our researches, as we have above stated, have been confined to different
cannel coals, anthracite, boghead, and coal plants isolated either in coal
pebbles, or in schists and sandstones.

[Illustration: 12a: FIG. 1.--Lancashire cannel coal; longitudinal section,

[Illustration: 12b: FIG. 2.--Lancashire cannel coal; transverse section,

Figs. 1 and 2 (magnified two hundred times) represent two sections, made
in rectangular planes, of fragments of Lancashire cannel coal. In a
certain measure, they remind one of Figs. 4 and 5, Pl 11, of Witham's
"Internal Structure of Fossil Vegetables," and which were drawn from
specimens of cannel coal derived likewise from Lancashire, but which are
not so highly magnified. There is an interesting fact to note in this
coincidence, and that is that this structure, which is so difficult to
explain in its details, is not accidental, but a consequence of the
nature of the materials that served to produce the coal of this region.
In the midst of a mass of blackish debris, _a_, organic and inorganic,
and immersed in an amorphous and transparent gangue, we find a few
recognizable fragments, such as thick-walled macrospores, _b_, of
various sizes, bits of flattened petioles, _c_, pollen grains, _d_,
debris of bark, etc. In Fig. 2 all these different remains are cut
either obliquely or longitudinally, and are not very recognizable. It is
not rare to meet with a sort of vacuity, _e_, filled with clearer matter
of resinoid aspect, without organization.

[Illustration: 12c: FIG. 3.--Commentry cannel coal, X200.]

In Fig. 3, which represents a section made from Commentry cannel coal,
the number of recognizable organs in the midst of the mass of debris is
much larger. Thus, at _a_ we see a macrospore, at _b_ a fragment of the
coat of a macrospore, at _c_ another macrospore having a silicified
nucleus, such as has been found in no other case, at _d_ we have a
transverse section of a vascular bundle, at _e_ a longitudinal section
of a rootlet traversed by another one, at _f_ we have a transverse
section of another rootlet, at _g_ an almost entire portion of the
vascular bundle of a root, and at _h_ we see large pollen grains
recalling those that we meet with in the silicified seeds from Saint

Cannel coal, then, shows that it is formed of a sort of dark brown gangue
of resinoid aspect (when a thin section of it is examined) holding in
suspension indeterminable black organic and inorganic debris, which are
arranged in layers, and in the midst of which (according to the locality
and the fragment studied) is found a varying number of easily recognized
vegetable organs.

[Illustration: 12d: FIG. 4.--Pennsylvania anthracite, X200.]

It is very rare that anthracite offers any discernible trace of
organization. Preparations made from fragments of Sable and Lamore coal
could not be made sufficiently thin to be transparent; the mass remained
very opaque, and the clearest parts exhibited merely amorphous,
irregular granulations. Still, fragments of anthracite from Pennsylvania
furnished, amid a dominant mass of dark, yellow-brown, structureless
substance, a few organized vegetable debris, such as a fragment of a
vascular bundle with radiating elements (Fig. 4, _a_), a macrospore,
_b_, and a few pollen grains or microspores, _c_.

[Illustration: 12e: FIG. 5.--Boghead from New South Wales, X500.]

From what precedes it seems to result, then, that anthracite is in a much
less appreciable state of preservation than cannel coal, and that it is
only rarely, and according to locality, that we can discover vegetable
organs in it. Soft coal comes nearer to amorphous carbon. Boghead appears
to be of an entirely different character (Fig. 5, magnified X300). It is
easily reduced to a thin transparent plate, and shows itself to be formed
of a multitude of very small lenses, differing in size and shape, and much
more transparent than the bands that separate them. In the interior of
these lenses we distinguish very fine lines radiating from the center and
afterward branching several times. The ramifications are lost in the
periphery amid fine granulations that resemble spores. We might say that
we here had to do with numerous mycelia moulded in a slightly colored
resin. Preparations made from New South Wales and Autun boghead presented
the same aspect.

If boghead was derived from the carbonization of parts that were soluble,
or that became so through maceration, and were made insoluble at a given
moment by carbonization, we can understand the very peculiar aspect that
this combustible presents when it is seen under the microscope.

The following figures were made in order to show the details of anatomical
structure that are still visible in coal, and to permit of estimating the
shrinkage that the organic substance has undergone in becoming converted
into coal.

It is not rare in coal mines to find fragments of wood, of which a portion
has been preserved by carbonates of iron and lime, and another portion
converted into coal. This being the case, it was considered of interest to
ascertain whether the carbonized portion had preserved a structure that
was still recognizable, and, in such an event, to compare this structure
with that of the portion of the specimen that was preserved in all its
details by mineralization.

[Illustration: 12f: FIG. 6.--_Arthropitus gallica_, St. Etienne; transverse
section, X200.]

Fig. 6 shows a transverse section of a specimen of _Arthropitus Gallica_
found under such conditions. The region marked c is carbonized; the
organic elements of the wood-cells, tracheae, etc., have undergone but
little change in shape. Moreover, no change at all exists in the
internal parts of another specimen (Fig. 8), where we easily distinguish
by their form and dimensions the ligneous cells, _aa_, and the elements,
_bb_, of the wood itself.

[Illustration: 12h: FIG. 8.--_Arthropitus gallica_, St. Etienne; transverse
section through the carbonized part.]

In the region, _b_, of Fig. 6, the ligneous elements have undergone an
evident change of form, and the walls have been broken. This region,
already filled by petrifying salts, but not completely hardened, has not
been able to resist, as the region, _a_, an external pressure, and has
become more or less misshapened. As for the not yet mineralized external
portion, _c_, it has completely given way under the pressure, the walls of
the different organic elements have come into contact, the calcareous or
other salts have been expressed, and this region exhibits the aspect of
ordinary coal, while at the same time preserving a little more hardness on
account of the small quantity of mineral salts that has remained in them
despite the compression.

From the standpoint of carbonization there seems to us but little
difference between the organic elements that occupy the region, _a_, and
those that occupy _b_. If the former had not been filled with hardened
petrifying matter, they would have been compressed and flattened like
those of region _c_, and would have given a compact and brilliant coal,
having very likely before petrifaction reached the same degree of
carbonization as the latter. The layer of coal in contact with the
carbonized or silicified part of the specimens is due, then, to a
compression of the organic elements already chemically carbonized, but in
which the mineral matter was not yet hardened and was able to escape.

[Illustration: 12g: FIG. 7.--_Arthropitus gallica_, St. Etienne; tangential
longitudinal section.]

If this be so, we ought to find the remains of organic structure in this
region _c_. In fact, on referring to Fig. 7, which represents a
tangential, longitudinal section of the same specimen, we perceive at _ab_
a ligneous duct and some unchanged tracheae situated in the carbonized
region, and then at _c_ the same elements, though flattened, in which,
however, we still clearly distinguish the bands of the tracheae; at _d_ is
found a trachea whose contents were already solidified, and which has not
been flattened; then, near the surface, in the region, _e_, the pressure
having been greater, it is no longer possible to recognize traces of
organization in a tangential section. In a large number of cases, the fact
that the coal does not seem to be organized must be due to the too great
compression that the carbonized cells and vessels have undergone when yet
soft and elastic, at the time this slow but continuous pressure was being

It also became of interest to find out whether, through the very fact of
carbonization, the dimensions of the organic elements had perceptibly
varied--a sort of research that presents certain difficulties. At present
we have no living plant that is comparable, even remotely, with those that
grew during the coal epoch. Moreover, the organic elements have absolutely
nothing constant in their dimensions.

Still, if we limit ourselves to a comparison of the same carbonized wood,
preserved on the one hand by petrifaction, and on the other hand
non-mineralized, we find a very perceptible diminution in bulk. The
elements have contracted in length, breadth, and thickness, but
principally in the direction of the compression that they have undergone
in the purely carbonized specimens.

In the vicinity of the carbonized portions, those of the tracheae that have
not done so have perceptibly preserved their primitive length, which has,
so to speak, been maintained by their neighbors, but their other
dimensions have become much smaller--a quarter in thickness and half in

[Illustration: 12i: FIG. 9.--_Calamodendron,_ Commentry; prosenchymatous
portion of the wood carbonized, X200.]

If the two fragments of the same wood are, one of them silicified and the
other simply carbonized and preserved in sandstone, the diminution in
volume will have occurred in all directions in the latter of the two.

[Illustration: 12j: FIG. 10.--_Calamodendron,_ fragment of the vascular
portion of the wood carbonized.]

Figs. 9 and 11, which represent a portion of the _fibrous_ region of
Calamodendron wood, may give an idea of the shrinkage that has taken place
therein. In Figs. 11 and 12, which show a few tracheae and medullary rays
of the ligneous bands of the same plant, we observe the same phenomenon.
We might cite a large number of analogous examples, but shall be content
to give the following: Figs. 13 and 15 represent radial and tangential
sections of the bark of _Syringodendron pes-caprae_. This is the first time
that one has had before his eyes the anatomical structure of the bark of a
_Syringodendron_, a plant which has not yet been found in a petrified
state. It is coal, then, with its structure preserved, that allows of a
verification of the theory advanced by several scientists that the often
bulky trunks of _Syringodendron_ are bases of _Sigillariae_.

[Illustration: 12k: FIG. 11.--_Calamodendron,_ from Autun; prosenchymatous
portion of the wood silicified, X200.]

[Illustration: 12l: FIG. 12.--_Calamodendron,_ from Autun; vascular portion
of the wood silicified.]

If we refer to Fig. 13, which represents a radial vertical section running
through the center of one of the scars that permitted the specimen to be
determined, we shall observe, in fact, a tissue formed of rectangular
cells, longer than wide, arranged in horizontal series, and very analogous
in their aspect to those that we have described in the suberose region of
the bark of Sigillariae. Fig. 15 shows in tangential section the fibrous
aspect of this tissue, which has been rendered denser through compression.
Fig. 14 shows it restored. In Fig. 13, the external part of the bark is
occupied by a thick layer of cellular tissue that exists over the entire
surface of the trunk, but particularly thick near the scars, exactly as in
the barks of the Sigillariae that we have formerly described. Finally, at
_b_, we recognize the undoubted traces of a vascular bundle running to the
leaves. If the bundle appears to be larger than that of the Sigillariae,
this is due to the flattening that the trunk has undergone, the effect of
this having been to spread the bundle out in a vertical plane, although
its greatest width in the first place was in a horizontal one.

[Illustration: 12m: FIG. 13.--_Syringodendron pes-caprae_; from Saarbruck;
radial vertical section, X200.]

[Illustration: 12n: FIG. 14.--Suberose cells restored.]

In anatomical structure, the barks of the Syringodendrons are, then,
analogous to those of the Sigillariae. If, now, we compare the dimensions
of the tissues of these barks with the same silicified tissues of the
barks of Sigillariae, we shall find that there was likewise a diminution in
the dimensions, but yet a less pronounced one than in the woods that we
have previously spoken of. The corky nature of this region of the bark was
likely richer in carbonizable elements than the wood properly so called,
and had, in consequence, to undergo much less shrinkage.--_Dr. B. Renault
(of Paris Museum) in Le Genie Civil_.

[Illustration: 12o: FIG. 15.--_Syringodendron pes-caprae;_ tangential
vertical section in the corky part of the bark, X200.]

DESCRIPTION OF THE FIGURES.--Fig. 1, Lancashire cannel coal; longitudinal
section, X200. Fig. 2, Lancashire cannel coal; transverse section, X200.
Fig. 3. Commentry cannel coal, X200. Fig. 4, Pennsylvania anthracite,
X200. Fig. 5, Boghead from New South Wales, X500. Fig. 6, _Arthropitus
gallica_, St. Etienne; transverse section, X200. Fig. 7, same; tangential
longitudinal section. Fig. 8, same; transverse section through the
carbonized part. Fig. 9. _Calamodendron_, Commentry; prosenchymatous
portion of the wood carbonized, X200. Fig. 10, same; fragment of the
vascular portion of the wood carbonized. Fig. 11, same, from Autun;
prosenchymatous portion of the wood silicified, X200. Fig. 12, same,
Autun; vascular portion of the wood silicified. Fig. 13, _Syringodendron
pes-caprae_; from Saarbruck; radial vertical section, X200. Fig. 14,
Suberose cells restored. Fig. 15. _Syringodendron pes-caprae_; tangential
vertical section in the corky part of the bark, X200.

* * * * *


The interest in sports of different kinds is increasing considerably in
the capital of the German Empire. Oarsmen and sailors show their ability
in grand regattas; roller-skating rinks are very, popular; numerous
bicycle clubs arrange grand tournaments; and training, starting, trotting,
swimming, turning, fencing, walking, and running are practiced everywhere.
As this winter has been quite severe in Germany, first class courses have
been made for ice boats. Ice boat, races are well known in the United
States, but are quite novel in Germany; at least, in the neighborhood of
Berlin, as they have been known only on the coast of the Baltic Sea.


These vessels are quite simple in construction, the base consisting of an
equilateral triangle made of beams and provided at the corners with
runners. The two front runners are fixed, but the one at the apex of the
triangle is pivoted, and serves as a rudder. The mast is on the front
cross beam, and between the front cross beam and the side beams sufficient
space is left for the helmsman.

The annexed cut, taken from the _Illustrirte Zeitung_, shows a race of the
above described ice boats on the Mueggelsee (Mueggel Lake), near Berlin.
It will be seen from the clumsy construction of the boats that the Germans
have not yet learned the art of building these vehicles.

* * * * *


[Footnote: A paper recently read before the Society of Arts, London.]


The United States of America are, collectively, of such vast extent, and,
singly, so individualized in character, that to speak of their labor
conditions as a whole would be as impossible, in an hour's address, as to
describe their physical geography or geology in a similar space of time. I
shall, therefore, confine what I have to say this evening on the subject
of labor and wages in America to a consideration of the industrial
condition of certain Eastern States, which, being essentially
manufacturing districts, offer the best instances for comparison with the
labor conditions of our own country. That this field is of adequate extent
and of typical character may be inferred from the fact that the three
States composing it, viz.. New York, Massachusetts, and Connecticut,
contain together nearly one-half of the whole manufacturing population of
America, while Connecticut and Massachusetts are the very cradle of
American manufacture, and the home of the typical Yankee artisan. In
addition, the State of Massachusetts is distinguished by possessing a
Bureau of Statistics of Labor, whose sole business is to ventilate
industrial questions, and to collect such facts as will afford the
statesman a sound basis for industrial legislation. We shall find
ourselves, in the sequel, indebted for spine of our chief conclusions to
this excellent public institution.

If we ask ourselves, at the outset of the inquiry, "Who and what are the
operatives of manufacturing America?" the answer involves a distinction
which cannot be too strongly insisted upon, or too carefully kept in mind.
These people consist, first, of native-born, and, secondly, of alien
workers. The United States census, reckoning every child born in the
country as an American, even if both his parents be foreigners, I would
make it appear that only six and a half millions out of its fifty millions
are of alien birth, but, for our purpose, these figures are misleading.
There is a vast difference, in many important respects, between
"Americans" derived from a stock long settled in the States and
"Americans" with two or even with one alien parent. In the former case,
the hereditary sense of social equality, the teaching of the common
school, and the influence of democratic institutions, produce a certain
type of character which I distinguish by the epithet "American" because it
is of truly national origin. In the latter case, the so-called "American"
may really be a German, an Irishman, an Englishman, or a Swede, but the
qualities which I would distinguish by the word "American" have not yet
been developed in him, although they will probably be exhibited by his
later descendants.

Setting the census figures aside, therefore, we find, from the
Registration Reports of Massachusetts, that fifty-four out of every
hundred persons who die within the limits of this State are of foreign
parentage. Now bearing in mind that Massachusetts is essentially a Yankee
State, where comparatively few European emigrants settle, it seems
probable that, going back several generations, the numbers, even of
Massachusetts men, who may be truly called "Americans" would dwindle
considerably. These men, however, the children of equality, of the common
school, and of democratic institutions, may be considered as leaven,
leavening the lump of European emigration, and shaping, so far as they
can, the character of the American; people that is yet to be.

Native American labor is best described by reference to a recent past,
when it filled all the factories of the United States, and challenged, by
its high tone, the admiration of Europe. At the beginning of this century,
public opinion in America was most unfriendly to the establishment of
manufactories, so great were the complaints of these made in Europe as
seats of vice and disease. Thus, when Humphreysville, the first industrial
village in America, was built, in 1804, by the Hon. David Humphreys, who
wished to see the colony independent of the mother country for her
supplies of manufactured goods, parents refused to place their children in
his factories until legislation had first made the mill-owner responsible
both for the education and morality of his operatives. Similarly, when the
cotton mills of Lowell, and the silk mills of Hartford, began to rise,
between 1832 and 1840, the American people held the capitalist responsible
for the moral, mental, and physical health of the people whom he employed,
with the result that all England wondered at the stories of factory
operatives, and their so-called "refinements," which were given to this
country by writers like Harriett Martineau and Charles Dickens.

Lowell, between the years 1832 and 1850, was, perhaps, the most remarkable
manufacturing town in the world. Help, in the new cotton mills, was in
great demand, and what were then thought very high wages were freely
offered, so that, in spite of the national prejudice against factory
labor, operatives began to flow from many quarters into the mills. These
people were, for the most part, the daughters of farmers, storekeepers,
and mechanics; of Puritan antecedents, and religious training. In the mill
they were treated kindly, and, although their hours were long, they were
not overworked. A feeling of real, but respectful, equality existed
between them and their employers, and the best hands were often guests at
the houses of the mill owners or ministers of religion. They lived in
great boarding-houses, kept by women selected for their high character,
and it is of these industrial families, and of their refined life, that
observers like Dickens, Lyell, and Miss Martineau spoke with enthusiasm.
The last writer has made us acquainted, in her "Mind among the Spindles,"
with the height to which intellectual life once rose in Lowell mills,
before the wave of Irish emigration, following on the potato famine, swept
native American labor away from the spindles. The morality of the early
mill-girls, again, was practically stainless, and, strict as the rules of
conduct were in the factories, these were really dead letters, so high was
the standard of behavior set and sustained by the mill-hands themselves.

Such was the character of native American labor, less than forty years
ago, and such, almost, it still remains in those, now few, centers of
industry where it has been little diluted with a foreign element. Nowhere
is this so conspicuously the case as in Massachusetts and Connecticut, and
especially in the western valleys of the former State, where important
mill-streams, such as the Housatonic, the Naugatuck, and the Farmington,
are lined with mills still largely manned by native Americans.

Aside from wages, which will be separately considered, the housing,
education, sobriety, and pauperism of any given industrial community form
together the best possible test of its social condition. In regard to the
housing of labor, there is no more important fact to be discovered than
the proportion of an operative population who possess in fee simple the
houses in which they dwell. This proportion among the wage-earners of
Massachusetts is remarkably high, one working man in every four being the
proprietor of the house in which he lives. Of the remaining three-fourths,
45 per cent. rent their houses, and 30 per cent. are boarders. With regard
to inhabitancy, the average number of persons living in one house in
Massachusetts is rather more than six, while the average number of the
Massachusetts family is four and three quarter persons. Hence, lodgers
being excepted, almost every operative family in this State lives under
its own roof, while one fourth of all such roofs are owned by the heads of
families dwelling therein.

I leave, for a moment, the agreeable task of describing one of these homes
of native American labor, and pass on to the question of education, whose
universality among native Americans is perhaps most vividly illustrated
by the following facts. Of 1,200 persons born in Massachusetts, whether of
native or foreign parents, only one is unable to read or write, while four
Germans and Scotch, six English, twenty French Canadians, twenty-eight
Irish, and thirty-four Italians, out of every 100 emigrants of these
nationalities respectively are illiterate. The total number of public,
elementary, and high schools in the United States is 225,800, or about one
school for every 200 of the entire population, and one for, say, every
fifty of the 10,000,000 pupils who attended school during the census year
of 1880. Finally, referring once more to Massachusetts, there are nearly
2,000 free libraries in this single State, or one to every 800
inhabitants, and these, together, own 3,500,000 volumes, and circulate
8,000,000 of volumes annually.

With regard to sobriety, it is well known that local option succeeds in
closing the liquor saloons in very many operative American towns, and with
the happiest results. The county of Barnstaple in Massachusetts, for
example, with a population of 32,000 souls, and having no licensed liquor
saloons, yields a crop of only three convictions per annum for
drunkenness. The county of Suffolk, on the other hand, with a population
of nearly 400,000, and a license for every 175 of its inhabitants,
acknowledges one drunkard for every 50 of its population. The labor in one
case is nearly all native; in the other, largely foreign.

It is almost, if not quite, impossible to obtain the statistics of
pauperism in America. The "indoor" poor, as paupers in almshouses are
called, can be found and counted with comparative ease, but how can the
outdoor paupers be found? It is no use inquiring for them from door to
door, and the poor-master's disbursements are so limited in amount that
his bills for pauper relief become mixed up with other items, so that they
cannot be separately stated. The total number of paupers resident in
American almshouses is 67,000, or about one in every 70,000 of the whole
population. In England, we have still one pauper in every fifty thousand
of the population. Such being the more important aspects of native
American labor, as displayed by the statistician, it is time for the
social observer to give his account of a typical American artisan's home.

We are at Ansonia, in the Naugatuck valley, one of the chief towns of
"Clockland," where, within a radius of twenty miles, watches and clocks
are made by millions and sold for a few shillings apiece. Our friend Mr.
S. is an Ansonia mechanic who occupies a house with a basement of cut
stone and a tasteful superstructure of wood, having a wide veranda,
kitchen, parlor, and bed-room on the ground floor and three bedrooms
above. The house is painted white, adorned with green jalousies, and
surrounded by a well-tilled quarter acre lot. Its windows are aglow with
geraniums, and from its veranda we glance upward to the wooded slopes of
the Green Mountain range, and downward to the River Naugatuck, whose blue
mill-ponds look like tiny Highland lakes surrounded by great factories.
Within, a pleasant sitting-room is furnished with all the comforts and
some of the luxuries of life, the tables are strewn with books, and the
walls decorated with pretty photographs. Mr. S.'s wife and daughter are
educated and agreeable women, who entertain us, during an hour's call,
with intelligent conversation, which, turning for the most part on the
events of the War of Independence, is characterized by ample historical
knowledge, a logical habit of mind, and a remarkable readiness to welcome
new ideas. No refreshments are offered us, for no one eats between meals,
and, in private houses, as in the public refreshment rooms, where native
labor usually takes its meals, nothing stronger than water is ever drunk.
Such are the homes of men whom I would distinguish as "American" artisans,
and such, also, are those of many foreign workmen who have been long under
native influence.

It is not in the valleys of Massachusetts, however, that the greatest
manufacturing cities of the Union are to be found, the towns already
referred to containing usually only a few thousand inhabitants, and being
still, for the most part, rural in their surroundings. They are, indeed,
the fastnesses, so to speak, to which the Yankee artisan has retired,
after having been almost literally swept out of the great manufacturing
cities by successive waves of emigrant labor, chiefly of Irish and
French-Canadian nationality. To these great cities we must now turn for
examples of a condition of operative society which contrasts most
unfavorably with that which has already been sketched; it being,
meanwhile, understood that a penumbral region, of more or less mixed
conditions, graduates the brightness of the one into the darkness of the
other picture.

The city of Lowell, whose brilliant past is so well known, exemplifies, on
that very account, better than any other manufacturing town in the States,
the character of recent alterations in American labor conditions. The
mill-hands, formerly such as I have described them, have been almost
entirely replaced by Canadians and Irish, who have given a new character
and aspect to the Lowell of forty years ago. "Little Canada," as the
quarter inhabited by the former people is called, exhibits a congeries of
narrow, unpaved lanes, lined with rickety wooden houses, which elbow one
another closely, and possess neither gardens nor yards. They are let out
in flats, and are crowded to overflowing with a dense population of
lodgers. Peeps into their interiors reveal dirty, poorly furnished rooms,
and large families, pigging squalidly together at meal times, while
unkempt men and slatternly women lean from open windows, and scold in
French, or chatter with crowds of ragged and bare-legged children, playing
in the gutters.

The Irish portion of the town has wider streets, and houses less crowded
than those of "Little Canada," but is, altogether, of scarcely better
aspect. Slatternly women gossip in groups about the doorways. Tawdrily
dressed girls saunter along the sidewalks, or loll from the window-sills.
Knots of shirt-sleeved men congregate about the frequent liquor-saloons,
talking loudly and volubly. No signs of poverty are apparent, but
everything wears an aspect of prosperous ignorance, satisfied to eat,
drink, and idle away the hours not given to work. Such is the general
aspect of operative Lowell to-day; but some of the old well-conducted
boarding-houses remain, sheltering worthy sons and daughters of toil.
Similarly, the outskirts of the city are adorned with many pretty white
houses, where typical American families are growing up amid wholesome
moral and physical surroundings, and enjoying all the advantages of
schools, churches, libraries, and free institutions which the Great
Republic puts everywhere, with lavish profuseness, at the service even of
its least promising populations.

Concerning the Lowell mill-hands of to-day, I prefer, before my own
observations, to quote from an article entitled "Early Factory Labor in
New England," written by a lady, herself one of the early mill-girls, and
published in the "Massachusetts Labor Bureau Keport for 1883." She says:

"Last winter, I was invited to speak to a company of the Lowell
mill-girls, and tell them something of my early life as a member of their
guild. When my address was over, some of them gathered round and asked me
questions. In turn, I questioned them about their work, hours of labor,
wages, and means of improvement. When I urged them to occupy their spare
time in reading and study, they seemed to understand the need of it, but
answered, sadly, 'We will try, but we work so hard, and are so tired.' It
was plain that these operatives did not go to their labor with the
jubilant feeling of the old mill-girls, that they worked without aim or
purpose, and took no interest in anything beyond earning their daily
bread. There was a tired hopelessness about them, such as was never seen
among the early mill-girls. Yet they have more leisure, and earn more
money than the operatives of fifty years ago, but they do not know how to
improve the one or use the other. These American-born children of foreign
parentage are, indeed, under the control neither of their church nor their
parents, and they, consequently, adopt the vices and follies instead of
the good habits of our people. It is vital to the interests of the whole
community that they should be brought under good moral influence; that
they should live in better homes, and breathe a better social atmosphere
than is now to be found in our factory towns."

The city of Holyoke, another great cotton center, having 23,000
inhabitants, is in some respects the most remarkable town in the State of
Massachusetts. It was brought into existence, 35 years ago, by the
construction of a great dam across the Connecticut River; and, around the
water power thus created, mills have sprung up so rapidly that the
population, whose normal increase is eighteen per cent. every ten years in
Massachusetts, has doubled, during the last decade, in Holyoke. But eighty
out of every 100 persons in the city are of foreign extraction, the
prevailing nationality being French-Canadian, a people who are so rapidly
displacing other operatives, even the Irish themselves, in the
manufacturing centers of New England that they must not be dismissed
without remark.

The Canadian-French were recently described in a grave State paper as a
"horde of industrial invaders," and accused of caring nothing for American
institutions, civil, political, or educational; having come to the States,
not to make a home, but to get together a little money, and then to return
whence they came. The parent of these immigrants is the Canadian
_habitan,_ a peasant proprietor, farming a few acres, living
parsimoniously, marrying early, and producing a large family, who must
either clear the soils of the inclement north, or become factory
operatives in the States. They are a simple, kindly, pious, and cheerful
folk, with few wants, little energy, and no ambition; ignorant and
credulous, Catholic by religion, and devoted to the priest, who is their
oracle, friend, and guide in all the relations of life. Such are the
people--a complete contrast with Americans--who began, some twelve years
ago, to emigrate to the mills of New England. They came, not only
intending to return to their own country with their savings, but enjoined
by the Church to do so. Employers, however, soon found out the value of
the new comers, and Yankee superintendents preferred them as operatives
before any other nationality, not only on account of their tireless
industry and docility, but because they accepted lower wages, and kept
themselves clear of trade-union societies. Thus, finally, it has come
about that nearly 70 per cent. of the cotton operatives at Holyoke are of
French-Canadian origin, and the social condition of all these people is
precisely similar to that which has already been described as
characterizing the inhabitants of "Little Canada" in Lowell.

It has already been said that the average rate of inhabitancy is six
persons per house in the State of Massachusetts, but the presence of the
French in Holyoke actually doubles the inhabitancy of the whole town, with
what effect upon their own special quarter may easily be imagined.
Probably nowhere in Europe could there be found more crowded houses, and
worse physical conditions of life, than in the quarters inhabited by
certain alien operatives in many manufacturing towns of the United States.

Sharp contrasts as they are, these sketches fairly picture the heights and
depths of industrial conditions in a region which, as I would again remind
you, contains nearly one-half of all the factory operatives in America.
More than this, while the States in question would yield to no others
their claims to represent advanced civilization, Massachusetts, the
creation of the Puritan refugees, and the cradle of American independence,
stands confessedly at the head of all her sister States for enlightened
philanthropy. There are no greater lovers of right, honorers of industry,
and friends to education in the world than its people, yet the present
social condition of Holyoke and of Lowell, as of many other manufacturing
cities, would have shocked all America thirty years ago, and been
impossible less than half a century back. It is time we should ask, How is
America going to treat a problem, formerly the danger and still the
perplexity of Europe, for which democratic institutions have failed to
furnish the solution once confidently, but unfairly, expected from them?

The State, the Church, and the School are all doing their best to prevent
the lapse to lower conditions which seems to threaten labor in the States,
each of them trying their utmost to "make Americans" of alien laborers, by
means of the political, religious, and educational institutions of the
country. How inadequate these unaided agencies are for the accomplishment
of their gigantic task is nowhere so clearly realized as in the common, or
free, schools of the States. These, in districts such as I have
distinguished as "American," are filled with boys and girls, of all ages
from five to eighteen, whose appearance and intelligence bespeak high
social conditions. Whatever the occupation which these young people may
ultimately adopt--and all of them are destined for work-a-day lives--an
observer feels quite sure that they are more likely to raise the character
of their several employments, than to be themselves degraded to lower
social levels, on quitting school.

But no similar confidence in the future of American labor is engendered by
visits to the schools where sits the progeny of alien labor. In the case
of the Canadians, indeed, parents and priests alike bend all their
energies to the establishment of "parochial schools," which, if they
forward the cause of the Church, do little for education in the American
sense of requiring good citizens, even more than good scholars, at the
hands of the national teachers.

The primary schools of great industrial towns, such as Fall River, the
Manchester of America, are filled, to quite as great an extent as similar
schools in Europe, with ignorant, ragged, and bare-footed urchins. These
children are, indeed, no less well cared for and taught than their Yankee
fellows, and one cannot sufficiently admire the energy and enthusiasm with
which school-teachers generally endeavor to "make Americans" of their
stolid and ragged little alien charges. In these cases, however, where
often the children have had no schooling at all before they are old enough
to work, it is quite clear that the school cannot do all that is required
to raise the labor of to-day up to the levels it occupied in the past.
And, if the school itself is ineffective in this regard, how much more so
must be the Church, to which immigrant youth is a comparative stranger; or
those democratic institutions which are based, to quote the words of
Washington himself, upon "the virtue and intelligence of the people."

Whether the present condition of labor in America will ever again be
lifted to the levels of the past depends, in truth, less upon the State,
the Church, and the School, than upon the part which the American employer
is taking or about to take in this question. It is impossible for any
unprejudiced observer to be long in the States, and especially in the New
England States, without coming to the conclusion that a large number of
employers are very anxious about the character of the labor they employ,
and willing to assist to the utmost of their power in improving it. In
spite of the love of money and luxury which is so conspicuous a feature of
certain sections of American society, a high ideal of the proper function
of wealth has arisen in the States, where large fortunes are chiefly
things of recent date, among large and influential classes having an
enlightened regard for the best welfare of the country. This regard finds
expression now in the establishment of a factory, managed with one eye on
profits and another on the elevation of the artisan, and now in the
endowment of free libraries or similar institutions, offering
opportunities of improvement to all.

To give only a few instances of the former movement: Mr. Pullman, the
great car-builder, has recently established, on Lake Calumet, a vast
system of workshops and workmen's homes, a description of which reads like
a chapter from More's "Utopia." The Waterbury Watch Company has lately
built a factory, employing 600 hands, on similar lines to those of Mr.
Pullman. Cheney Brothers' silk mills at South Manchester remain now, after
Irish labor has entirely taken the place of native hands, at almost the
same high level as that which, in common with Lowell, they held forty
years ago. Messrs. Fairbanks, of St. Johnsbury, in Vermont, conduct a
large establishment, where every married _employe_ owns a house in the
village, almost an Eden for beauty and order, which has grown up around
these remote but remarkable scale works. Similarly, the Cranes at Dalton,
in Massachusetts; Messrs. Brown, Sharpe and Co., at Providence, Rhode
Island; Mr. Hazard at Peacedale, Narragansett; and last, not least, Col.
Barrows, at Willimantic, in Connecticut, have all succeeded in restoring
the past conditions of native American labor among operatives, now, for
the most part, of alien origin.

I wish that time permitted me to sketch, however briefly, the mills to
which I have last alluded. It must suffice to say that the devoted labors
of Col. Barrows, President of the Willimantic Thread Co., have succeeded
in creating, out of Irish labor, social conditions of industrial life
which approach ideal perfection as nearly as the work of imperfect man can
possibly do. And, better still, the high morality and intelligence of Col.
Barrow's 1,600 operatives, the comfort and seemliness of their homes, the
cleanly and cheerful character of the mill work, even the refinements of
the music and art schools attached to the mill, can be proved, by hard
figures, to be paying factors in the undertaking, viewed from a purely
commercial standpoint.

So far, I have endeavored to show that a great contrast exists between
what once was and now is the condition of factory labor in America. I
have, further, described certain survivals of an earlier and happier state
of things, and indicated the forces now at work tending to lift the
Holyoke of to-day, for example, to the social levels of old Lowell. I have
given my reasons for believing that the democratic institutions of America
are incapable, unaided, of accomplishing such a task as this charge
implies, and concluded that its accomplishment depends mainly on the
action of the American employer. What this action as a whole, and what,
therefore, the future of labor in America is likely to be, I confess
myself in grave doubt--doubt from which I turn, with something like a
sense of relief, to discuss those economical considerations affecting
wage-earners which have hitherto been made to give place to social

We have now to ask what are the wages of labor in the States, their
relation to the cost of subsistence, and to wages and cost of subsistence
in our own country? Finally, I shall briefly consider certain propositions
of the American political economist which are so inextricably mixed up
with the question of labor and wages in the States that it is impossible
to discuss the one without taking some note of the other.

Until quite recently, no complete investigation, bringing the rates of
wages paid in industries common to the United States and European
countries, has ever been made, although the results of such an
investigation have been constantly and earnestly called for both by the
press and people of America. Permit me to remark, in passing, that we know
little in this country of the desire for full, trustworthy, and accessible
statistics, concerning all matters of national interest, which dominates
the public mind of America; and as little of the willingness with which
American citizens of all classes place the particulars of their private
business at the service of the statistician. This desire for statistical
bases whereon the statesman and economist may build, is vividly
illustrated by that publication, perhaps the most wonderful in the whole
world, entitled a "Compendium of the Census of the United States," issued
with every decade. These volumes, accessible to everybody, and arranged
with marvelous skill and lucidity, offer to the social observer a
complete, accurate, and suggestive survey of every field comprised within
the vast domain of the national interests. An evening's address would not
more than suffice to indicate the scope and appraise the value of this
work, which is a mine wherein, the ore ready dressed to his hand, the
politico-economic or industrial essayist might work for years without
exhausting its riches.

But the United States Census does not treat specifically of wages and
subsistence, and it is to the Massachusetts Labor Bureau that we must
again turn for such information as we now require. Dr. Edward Young,
indeed, the late chief of the United States Bureau of Statistics,
published an elaborate work upon this subject in 1875, but his comparisons
as to the relative cost of living in America and Europe, good in
themselves, are rendered of little value by the absence of such statistics
as would give the true percentage of difference between American and
foreign wages. Several elaborate wages reports were also published between
1879 and 1882, which, while they gave the American side of the question
with great fullness, presented foreign wages very incompletely.

Always, however, impressed with the importance of making an accurate
comparison between wages and the cost of subsistence on the two sides of
the Atlantic, but unable to undertake a very wide inquiry with the funds
at its disposal, the Massachusetts Bureau determined, in the fall of 1883,
upon reducing to narrower limits than heretofore the field of
investigation. Instead of America and Europe, Massachusetts and Great
Britain were selected for comparison, the former as the chief
manufacturing State of America, the latter as her leading competitor.

With this view, a number of agents were sent to gather personally, from
the pay rolls of American and English manufactories, the rates of wages
paid in twenty-four of the leading industries which are common to the two
districts respectively. It was, at first, sought to extend the inquiry to
thirty-five different industries, a number which would practically have
covered the whole ground, but nine of these were finally abandoned for
want of sufficient British information.

It is a perfectly easy thing, as already indicated, to gather wage or
other statistics in the counting-houses of Massachusetts manufactories,
but quite a different matter when a collection of similar information is
attempted in this country, where most proprietors are unwilling, and many
altogether refuse, to give any information regarding their industries.

The following table, of which an enlarged facsimile, marked A, appears on
the wall, specifies the twenty-four industries from which the returns in
question were made, and the number of establishments making such returns
in each industry in either country:

_Table A_.

Industries. Massachusetts. Great Britain. Total

Agricultural implements 4 1 5
Artisans' tools 3 4 7
Boots and shoes 18 2 20
Brick 3 1 4
Building trades 32 24 56
Carpetings 1 1 2
Carriages and Wagons 11 3 14
Clothing 10 4 14
Cotton goods 10 9 19
Flax and jute goods 2 3 5
Food preparations 5 2 7
Furniture 11 1 12
Glass 1 3 4
Hats (fur wool and silk) 3 2 5
Hosiery 5 3 8
Liquors (malt and distilled) 10 1 11
Machines and machinery 12 15 27
Metals and metallic goods 25 13 38
Printing and publishing 12 7 19
Printing, dyeing and bleaching etc 3 4 7
Stone 10 1 11
Wooden goods 12 1 13
Woolen goods 4 2 6
Worsted goods 3 3 6

210 110 320

Thirty-two cities in Massachusetts, and twenty-six in Great Britain, were
visited in search of returns, of which almost all our great industrial
centers yield their quota.

It being, of course, impossible to obtain wage returns for all the
_employes_ of these various industries in either country, the
investigation aimed at covering at least 10 per cent. of such totals, and,
in the case of Massachusetts, succeeded in getting returns for 36,000
hands, or 13 per cent. of the whole number of artisans employed in the
twenty-four industries examined. Great Britain, on the other hand, made
returns for about half that number of hands, but their proportion to the
totals employed cannot be similarly stated, first, because we have here no
specific industrial census, and, second, because many of the English
returns were made for an indefinite number of _employes_.

The comparison was made in the following way: For each of the twenty-four
industries, a table, consisting of four sections, was constructed, viz.,
"Occupation," "Aggregation," "Recapitulation," and "Comparison." The first
gave the names of the various branches of each industry, classifying these
as minutely as possible, because the names indicating subdivisions of
labor are, generally, so different in the two countries that the actual
"matching" of occupations, desirable for a perfect comparison, is
impossible. The second, or "Aggregation" section, brings the various
occupations in the same industry into juxtaposition, and supplies
opportunities for direct comparison. The third, or "Recapitulation"
section, is drawn from the "Occupation" section, and shows the number of
men, women, young persons, and children for whom wages are given; whether
these are paid by the day, or by piece; and whether the wage returns show
the actual amounts paid to a definite number of _employes_, or an average
wage for a definite or an indefinite number of _employes_. The fourth, or
"Comparison" section, brings the highest, lowest, and general average
weekly wages into final comparison.

The first three sections of the table, being either simply enumerative or
collective in character, are easily understood without illustration, but
an example of the "Comparative" section, marked Table B, hangs on the
wall, and shows all the final comparisons at a glance.

_Table B_.
| 1 | 2 | 3 | 4
Classification. |Massac- | Great | Massac- | Great
|husetts.| Britain.| husetts.| Britain.
Average highest weekly | dols. | dols. | dols. | dols.
wage paid to-- | | | |
Men | 37.00 | 13.39 | 25.41 | 11.36
Women | 5.50 | ... | 8.57 | 4.10
Young persons | 7.00 | 3.65 | 6.94 | 3.04
Children | 5.70 | ... | 4.64 | 1.05
| | | |
Average lowest weekly wage | | | |
paid to-- | | | |
Men | 7.60 | 3.21 | 7.09 | 4.72
Women | 5.00 | ... | 4.62 | 2.27
Young women | 4.50 | 1.46 | 4.26 | 1.66
Children | 3.00 | ... | 3.09 | .60
| | | |
Average weekly wages | | | |
paid to-- | | | |
Men | 12.04 | 8.07 | 11.85 | 8.26
Women | 5.12 | ... | 6.09 | 3.37
Young persons | 5.76 | 2.52 | 5.10 | 2.40
Children---- | 5.31 | ... | 3.81 | .79
General average weekly wage | | | |
paid to all _employes_ | 11.75 | 8.07 | 10.32 | 6.96
Result: General average | |
weekly wages higher in | 45.60 | 48.28
Massachusetts by per cent | per cent. | per cent.

The two first columns of the table are simply illustrative of the method
applied to a single industry, exhibiting the highest average, lowest
average, and average weekly wages, whether to men, women, young persons,
or children, in the particular business of "machine-making," together with
the general average wages paid to all the _employes_ in such industry. The
general average weekly wages in this industry are thus shown to be 45.6
per cent. higher in Massachusetts than in Great Britain.

The 3d and 4th columns of the table consolidate all the twenty-four
industries, and yield, in similar terms, as in the case of machine-making,
an average comparison applying to the whole group of industries under
examination, giving, as a grand result, that the general average weekly
wages of Massachusetts are higher by 48.28 per cent. than those of Great

It is, however, explained that the British wage returns were made in three
different ways, viz., for a definite number of _employes_, by percentage
returns, and by general returns; both of the latter being for an
indefinite number of _employes_. Where more than one wage-basis was given,
the highest figure was used in the calculations, and, this being the case
in eighteen out of the twenty-four industries, its effects on the grand
result are considerable; for, by crediting Great Britain with the
_average_ instead of the _high_ weekly wage, the average percentage in
favor of Massachusetts rises from 48.28 per cent. to 75.94 per cent.

In order truly to indicate the higher percentage of average weekly wages
in Massachusetts, we must, therefore, agree upon a figure somewhere
between these two extremes, viz., that of 48.28 per cent., derived from
tables in which Great Britain is credited with the high wage, and that of
75.94 per cent., derived from those tables in which she is credited with
the average of the returns made upon the different bases. The mean of
these figures is 62.11 per cent., which is considered to be the result of
the investigation, and may be formulated as follows: The general average
weekly wages paid to _employes_ in twenty-four manufacturing industries
common to Massachusetts and Great Britain is 62 per cent., higher in the
former than the general average weekly wages paid in the same industries
in the latter country.

But the question of wages forms only one side of the working man's
account; on the other stands the cost of living, and no comparisons of
prosperity, in given industrial communities, are of any value which omit
to take into consideration the relative ease with which such communities
can procure the means of subsistence. Table C presents a summary of
prices, gathered in 1883, of the chief items in a working man's
expenditure, and their cost in Massachusetts and Great Britain.

_Table C_.

Articles. |Percentage higher | Percentage higher
| in Mass. | in Great Britain
Groceries | 16.18 | -
Provisions | - | 20.00
Fuel | 104.98 | -
Dry goods | 13.26 | -
Boots and shoes | 42.75 | -
Clothing | 45.06 | -
Rents | 89.62 | -

Having agreed that wages are probably 62 per cent. higher in
Massachusetts than in Great Britain, it would be easy, if we could
ascertain what proportion of a working man's income is spent respectively
in groceries, provisions, clothing, etc., to determine what advantage an
operative derives from the higher wages of the United States. Dr. Engel,
the chief of the Prussian Bureau of Statistics, puts us in possession of
this information, and, as the result of a laborious inquiry, has
formulated a certain economic law which governs the relations between
income and expenditure. From him we learn (see Table D) that:

_Table D_.

A working man with an income of L60 per annum
spends as follows:

Per cent.
of income. Shillings.
/ meat.... 248
1. On subsistence 62 or \ groceries 496
2. " clothing 16 " 192
3. " rent 12 " 144
4. " fuel 5 " 60
5. " sundries 5 " 60
Total shillings 1,200
Or L60

Now, referring to Table C, it will be seen that the same man's expenditure
in America would be:

Shillings. S.

1. On subsistence / meat.... 248 - 20 p.c. = 198.4
\ groceries 496 + 16 " = 575.3
2. " clothing 192 + 45 " = 278.4
3. " rent 144 + 89 " = 272.1
4. " fuel 60 + 104 " = 122.0
5. " sundries 60 + 50 " = 90.0
Total 1,536.2
Or L76 16s.

In other words, a workman earning L60 per annum in Great Britain would
receive L99, or 62 per cent. more wages in the States, but living there
would cost him L77, or L17 more than here, giving him a net advantage of
only 28 per cent., instead of 62 per cent., derived from living and
working in America.

But this result does not exhaust the question. The standard of life is
very different among working men in the States and in Great Britain, and
the almost inexhaustible statistics of the report, already so often
quoted, enable us to gauge this difference with accuracy. It has been
proved, by a recent investigation, whose details we need not follow, that
the expenditure of working men's families, of similar size, in
Massachusetts and in Great Britain, stand to each other in the ratio of 15
to 10. By introducing this new factor into our calculations, we find that
a man who spends L60 per annum in England would spend L90, instead of L77,
per annum in the States, paying American prices for subsistence, and
living up to American standards. In other words, he would be a gainer to
the extent of only L9 per annum by living and working in the United
States. Finally, if we presume that 48 or 50 per cent., rather than 62 per
cent., measures the higher wages of Massachusetts, the same man's
increased wages would be L90 instead of L99, and he would-neither lose nor
gain in money by becoming an American citizen, and adopting American

That these conclusions agree with those rough and ready practical
illustrations which, without being scientific, are generally trustworthy,
let the following story evidence.

Some years ago, a skillful moulder, in my then firm's employ, left us for
the States, where he permanently settled. After a long absence, he
returned for a few weeks' holiday, when I asked him whether he earned
higher wages and found life more agreeable in America than in England.
"Well, as to money" was his reply, "I think, taking all things into
consideration, I did about as well in the old shop as I do now; but,
socially speaking, I am somebody there, while here I am only a moulder."
Social advantage, indeed, probably measures almost all the difference
between the position of a skilled factory operative in the States and in

Let me not seem, however, to undervalue that difference. Statistics, after
all, do not dominate human nature; on the contrary, human nature
determines the statistician's figures. Every artisan emigrant to America
gains opportunities of advancement of which his European fellows know
nothing. If he have brains, the way to success is open there, while it is
practically barred to anything short of genius for men of his class in
Europe. Our Australian colonies, where unskilled labor can earn 7s. 6d. a
day, and live for a trifle, are, indeed, a paradise for the mere
wage-earner, who can scarcely help becoming also a wage-saver; but America
is the country which, with wage conditions such as I have attempted to
portray, still offers the best possible opportunities of success, and even
of great careers, to clever working men, and especially to clever
mechanics. That man, however, is not worthy of a home in the great
republic, who does not appreciate the higher social levels at which native
labor desires to live, who is not anxious to make the most of the
advantages which democratic institutions offer him, who does not, in
short, ardently desire to become a "good American."

There remains the question already alluded to as inextricably bound up
with American labor problems: How does the American tariff affect wages?
The idea that these are determinable by the tariff is the corner stone of
protection in the States. The artisan has been so sedulously educated to
believe that the chief object of import duties is to protect him from
falling into a ruinous competition with what is called the "pauper labor
of Europe," that no movement on the part of workmen in the direction of
free trade is ever likely to arise in America. I am not now about to argue
the question of protection, except in so far as it relates to labor; but
it may be remarked, in passing, that internal competition, rather than the
people, is the enemy from whom the tariff will probably receive its death
blow in the future. Protection will ultimately break down by its own
weight in the States. Production already exceeds demand, the cry for a
"wider market" and for "raw materials free" is in every manufacturer's
mouth; and if America upholds her protective legislation too long, the
produce of her factories and mills will, by and by, force its way, in
spite of the tariff, into the open markets of the world, but it will be
through the gate of national suffering. Few people in this country are, I
think, aware of the extraordinary fervor with which the doctrine that
protection benefits labor is preached in the States. We are ourselves
accustomed to hear the question of free trade argued only from the
economic standpoint, but this is by no means so commonly the case in
America. I shall try, by paraphrasing certain recent addresses of an able
personal friend and enthusiastic protectionist, to illustrate the position
taken by those persons who advocate the tariff, not upon economic grounds,
but in the avowed interests of labor.

Referring to the words "Free Trade," the speaker in question begins by
asking, "What is the essential nature of that which we call trade?" And
answers himself as follows:

"The grim, ugly fact is that trade is a fight, the markets are battle
fields, the traders are gladiators, carrying on a true war around
questions of values, with no care whether the opposing party or the
community at large can afford that the trade is made. This contest is
always going on, whether a lady buys a pair of gloves, or a syndicate
corners Erie. Antagonism is so fixed an element of trade, and so often
defeats the object it blindly follows, as to make laws which seek to
mitigate the ferocity of the struggle as welcome to the far-sighted man of
business as they are to the foredoomed victims of this relentless

On the other hand, competition is said to be a--

"Wonder worker in developing energy in the strongest individuals, and
massing wealth in masterful states; but, since competitive trading can
never be wholly beneficent, it should be strictly controlled, in the
interests of the toiling millions, who are too weak successfully to oppose
its attacks. The results of forcing on the naturally weak, by means of
competition, hard and unequal bargains which are evaded by the strong, are
appalling in their magnitude, dividing whole peoples permanently into
castes, rich and poor, injuring the former by excess, and the latter by
deprivation, making a nation strong in the trading instinct, and rich in
accumulated wealth, but weak and poor in all its other parts. This abuse
is saddest of all when, failing to be recognized as an evil, the doctrines
of free trade are wrought into the policy and social life of a people."

Protective remedies for this state of things are introduced as follows:

"Wherever the value of competition has been fully recognized, but
supplemented by wise control of its energies, the results are excellent.
This fact forms the foundation of our protective laws, whose very name
'protective' implies assailants; those hard bargains, to wit, driven on
the fighting side of trade, under the motto of 'let the fittest survive.'
When a small army is attacked by a large one, it covers itself by
earthworks. Similarly, where there are sheep, and wolves abound, the
farmer puts up fences which effectually protect his flock; and, in the
same way, tariffs are 'forts,' whence the artisan may hope successfully to
defend himself against the attacks of his powerful and unscrupulous enemy,
capital; or they may even be considered as a pistol, which a little fellow
points at a big bully who threatens him with a thrashing."

Such are the arguments which are urged with great fervor, and immense
effect, upon the American artisan, who fully and firmly believes that
protection is the only agent capable of lifting his lot above those,
dreaded levels at which the "pauper labor of Europe" is universally
believed to live.

The simple answer to all this rhetoric appears to be that, while it might
be valid as an indictment of the competitive system as a whole, it is
valueless when directed against a part of that system only. Advocates who
are not prepared to say that every bargain shall be controlled by
beneficence, and who distinctly admire the chief results of competition,
cannot logically demand that labor, alone of all salable commodities,
shall be bought and sold on altruistic principles.

In what immediately precedes, I have endeavored to indicate the character
of the pleadings which make American artisans universally supporters of
the tariff, and we must now return to the question, What, after all, is
really the effect of protection on wages in America? I answer that no
legislative schemes can add to, although they may injure, the material
resources of a state. Capital can only support the labor for which the
annual harvest of such resources pays, and all that legislation can do is
artificially to divert labor and capital from directions which they would
take under the influence of natural laws.

America is selling, at the present time, about L160,000,000 worth of food
and other raw products in Europe. These, together, represent her chief
branch of business, in which nearly fifty per cent. of her population is
engaged, and all this merchandise is sold in the free trade markets of the
world. Wages in America, therefore, cannot possibly be regulated by the
tariff, because, whatever wages can be earned by men engaged in the
production of agricultural products--the prices of which are fixed in
Liverpool--must be the rate of wages which will substantially be paid in
other branches of business. Wages, like water, seek a level; if
manufacture pays best, labor will quit agriculture; if agriculture pays
best, manufactures will decline, and agriculture progress.

A glance at the condition of industrial society in America vividly
illustrates this conclusion. Any man, with a few dollars and a strong pair
of arms, can win far greater rewards from the soil than he could possibly
obtain by the same effort in Europe. His wages are high, because the grade
of comfort to be obtained from the land by means of a little labor is
high, and the artisans' wages must follow suit, if men are to be tempted
from the field into the workshop. American politicians, however, would
have us believe that American labor owes its prosperity to taxation; in
other words, that what the immigrant seeks is not the rich prizes offered
him by a free and fertile soil, but the blessings which flow from a tariff
that adds an average 40 per cent. to the cost of everything he needs
except food.

One more illustration, and I have done. Upon the wall hangs a diagram
which shows the movements of American wages, of English wages, and of the
tariff from 1860 to 1883. I have already argued that a tariff cannot
determine wages, and the diagram affords positive proof that it has not
determined them in America, as between 1860 and the present time. On the
contrary, their movements are evidently due to the same causes as have
influenced wages here during this period, while it is certainly remarkable
that they have fallen sooner, fallen lower, and recovered less completely
in America, where industry is "protected," than in Great Britain, were it
is "unprotected."

Shortly to recapitulate all that has been advanced, I have endeavored to

1st. That a great change has occurred in the social condition of labor in
the United States during the last forty years, and that, spite of all the
existing agencies of improvement, it is doubtful whether the working
classes of America are not, at the present moment, falling still further
from those high ideals of operative life which once so brilliantly
distinguished the United States from European countries.

2d. That, although wages are probably some 60 per cent. higher in the
chief manufacturing districts of America than in Great Britain, yet an
English artisan would find himself little richer there than at home, after
paying the enhanced prices for subsistence, and conforming to the higher
standard of life which prevails in the States. At the same time, his whole
social position and opportunities of advancement would be immensely

3d. I have tried to demonstrate that the tariff, to which the higher wages
of America are so confidently attributed, has really no influence whatever
upon them, and that it is not therefore an engine, such as it is glowingly
represented to the American artisan, constructed for the purpose of
raising his lot above that of the so-called "pauper labor of Europe." Any
inquiry into the character of the work really accomplished by the engine
in question would lead me into regions of controversy forbidden in this

Finally, if I am asked why, in a review of American labor and wages, I
have said nothing of trade unionism on the one hand, and of co-operative
production on the other, I can only answer that to have introduced these
among so many other interesting, but subsidiary, subjects which crowd
around questions of labor and wages, would have doubled the volume of this
address, and more than halved the patience with which you have kindly
listened to it.

* * * * *

A catalogue, containing brief notices of many important scientific papers
heretofore published in the SUPPLEMENT, may be had gratis at this office.

* * * * *




Sent by mail, postage prepaid, to subscribers in any part of the United
States or Canada. Six dollars a year, sent, prepaid, to any foreign

All the back numbers of THE SUPPLEMENT, from the commencement, January 1,
1876, can be had. Price, 10 cents each.

All the back volumes of THE SUPPLEMENT can likewise be supplied. Two
volumes are issued yearly. Price of each volume, $2.50, stitched in paper,
or $3.50, bound in stiff covers.

AMERICAN SUPPLEMENT, one year, postpaid, $7.00.

A liberal discount to booksellers, news agents, and canvassers.



* * * * *


In connection with the SCIENTIFIC AMERICAN, Messrs. MUNN & Co. are
Solicitors of American and Foreign Patents, have had 40 years' experience,
and now have the largest establishment in the world. Patents are obtained
on the best terms.

A special notice is made in the SCIENTIFIC AMERICAN of all Inventions
patented through this Agency, with the name and residence of the Patentee.
By the immense circulation thus given, public attention is directed to the
merits of the new patent, and sales or introduction often easily effected.

Any person who has made a new discovery or invention can ascertain, free
of charge, whether a patent can probably be obtained, by writing to MUNN &

We also send free our Hand Book about the Patent Laws, Patents, Caveats,
Trade Marks, their costs, and how procured. Address


Branch Office, cor. F and 7th Sts., Washington, D.C.


Back to Full Books