The Infant System
Samuel Wilderspin

Part 5 out of 7

puddings, and to eat by itself. Q. Should country children keep an egg
if they find it in the hedge? A. No, it is thieving; they should find
out the owner and take it home. Q. Do children ever throw stones at
the fowls? A. Yes; but they are mischievous children, and perhaps do
not go to school. Q. What ought children to learn by going to school?
A. To be kind and good to every body, and every thing that has life.


Q. What letter is this? A. Letter F, the first letter in frying-pan,
father, &c. Q. Let me hear you spell frying-pan. A. F-r-y-i-n-g-p-a-n.
Q. What is the use of the frying-pan? A. To fry meat and pan-cakes.
Q. Spell me the names of the different kinds of meat. A. B-e-e-f,
p-o-r-k, m-u-t-t-o-n, l-a-m-b, h-a-m, &c. Q. Of what shape are
frying-pans? A. Some circular, and some are like an ellipsis.[A] Q.
Are there any other utensils into which meat is put that are circular?
A. Yes, please, sir, my mother has some circular plates; and, please,
sir, my mother has some elliptical dishes. Q. Any thing besides? A.
Yes, please, sir, my mother has a circular table; and, please, sir, my
mother has a rectangular one, and it is made of deal.

[Footnote A: It may possibly strike some of my readers as strange
that a geometrical question should be put in a conversation on the
alphabet, but it should be remembered that, according to the Infant
School system, _language_ is not taught exclusively, but in connection
with _number_ and _form_;--questions like the above, therefore are
calculated to excite their memories, and induce an application of
their geometrical knowledge.]


Q. What letter is this? A. Letter G, the first letter in goat, good,
girl, &c. Q. Spell goat. A. G-o-a-t. Q. What is the use of the goat'?
A. In some countries people drink the goat's milk; and the skin is
useful to make the upper-leather of shoes. Q. Are goats fond of going
into the valleys and low places? A. No; they are fond of going up
hills and high places. Q. If a goat is coming down a hill which has
only one narrow path merely wide enough for one goat to walk on
without falling down, and another goat is coming up the same path,
what do they do? A. The goat that is coming up lies down and lets the
other goat walk over him. Q. Why does not one of the goats turn round
and go back again? A. Because there would not be room, and the one
which should try to turn round would fall down and be killed.

Q. What letter is this? A. Letter H, the first letter in horse, house,
&c. Q. What is the use of the horse? A. To draw carts, coaches,
stages, waggons, fire-engines, &c. Q. Spell horse, and cart, and
coach. A. H-o-r-s-e, c-a-r-t, c-o-a-c-h. Q. What is the difference
between a cart and coach? A. A cart has two wheels, and a coach has
four. Q. Tell me some other difference. A. The horses in a cart go
before each other, but the horses in a coach go side by side. Q. What
is the use of a fire-engine? A. To put the fire out when the house is
on fire. Q. Is it right for children to play with the fire? A. No,
very wrong; as many children are burnt to death, and many houses burnt
down from it. Q. Should the horse be cruelly used? A. No; he should
be kindly treated, as he is the most useful animal we have. Q. Who
created him? A. Almighty God.


Q. What letter is this? A. Letter I, the first letter in iron,
idleness, &c. Q. Spell iron. A. I-r-o-n. Q. What is the use of an
iron? A. To iron the clothes after they are washed, and to make them
smooth. Q. How do they iron the clothes? A. Make the iron hot, and
then work it backwards and forwards on the clothes. Q. Should little
children come with clean clothes to school? A. Yes; and clean hands
and faces too. Q. Is not iron used for other purposes? A. Oh, yes; for
a great many things, as knives, forks, &c.


Q. What is this letter? A. J, the first letter in jug, John, &c. Q.
What is the use of the jug? A. To hold water, or beer, or any other
liquid. Q. What is a jug made of? A. Of clay, which is worked round
into the shape of a jug, and then burnt, and that hardens it. Q.
Should children be careful when they are carrying a jug? A. Yes; or
else they will let it fall and break it. Q. Then it is necessary for
children to be careful? A. Yes, every body should be careful.


Q. What letter is this? A. Letter K, the first letter in kite, &c. Q.
What is the use of the kite? A. For little children to fly. Please,
sir, my big brother has got a kite. Q. What does your brother do with
his kite? A. Please, sir, he goes into the fields when he has got
time, and flies it. Q. How does he fly it? A. Please, sir, he has got
a long string, which he fixes to another called a loop, and then he
unwinds the string, and gets some boy to hold it up. Q. What then? A.
Please, sir, then he runs against the wind, and the kite goes up. Q.
What is the use of the tail of the kite? A. Please, sir, it will not
fly without a tail. Q. Why not? A. Please, sir, it goes round and
round without a tail, and comes down. Q. Then what do you suppose is
the use of the tail? Please, sir, I don't know. Another child will
probably supply the answer. Please, sir, to balance it.


Q. What letter is this? A. Letter L, the first letter in lion, &c. Q.
Spell lion. A. L-i-o-n. Q. What is the size of a full grown lion? A.
A full grown lion stands four feet and a half high, and is eight feet
long. Q. How high do you stand? A. Please, sir, some of us stand two
feet, and none of us above three. Q. Has the lion any particular
character among beasts? A. Yes, he is called the king of beasts on
account of his great strength. Q. When he seizes his prey, how far can
he leap? A. To the distance of twenty feet. Q. Describe some other
particulars concerning the lion. A. The lion has a shaggy mane, which
the lioness has not. Q. What other particulars? A. The lion's roar is
so loud that other animals run away when they hear it. Q. Where are
lions found? A. In most hot countries: the largest are found in Asia
and Africa.


Q. What letter is this? A. Letter M, the first letter in Monday,
mouse, &c. Q. What is the use of the mouse? A. To make the servants
diligent and put the things out of the way. Q. How can mice make
servants diligent? A. If people do not put their candles in a proper
place the mice will gnaw them. Q. Are mice of any other service? A.
Please, sir, if the mice did not make a smell, some people would never
clean their cupboards out.[A]

[Footnote A: This answer was given by a child four years old; and
immediately afterwards another child called out, "Please, sir, if it
were not for bugs, some people would not clean their bedsteads."]


Q. What letter is this? A. Letter N, the first letter in nut, &c. Q.
What is a nut? A. A thing that is hard, and it grows on a tree. Q.
What shape is it? A. Something in the shape of a marble. Q. How can
it be eaten, if it is like a marble? A. Please, air, it is the kernel
that we eat. Q. flow are nuts produced? A. They grow on trees.


Q. What letter is this? A. Letter O, the first letter in orange. Q.
Of what colour is an orange? A. An orange is green at first, but
afterwards becomes of a colour called orange-red. Q. Do they grow in
the ground like potatoes? A. No, they grow on trees like apples. Q.
Can you tell me anything in the shape of an orange? A. Yes, the earth
on which we live is nearly of that shape. Q. On what part of the earth
do we live? A. The surface. Q. What do you mean by the surface? A.
The outside. Q. Who formed the earth, and preserves it in its proper
motions? A. Almighty God.


Q. What letter is this? A. Letter P, the first letter in pig,
plum-pudding, &c. Q. What is the use of the pig? A. Its flesh is
eaten, and is called pork. Q. What is the use of the hair or bristles?
A. To make brushes or brooms. Q. What is the use of a brush? A. Some
brushes are to brush the clothes, and others to brush the dirt out of
the corners of the room. Q. Does a good servant ever leave the dirt
in the corners? A. No, never; a good servant or any clean little girl
would be ashamed of it.


Q. What letter is this? A. Letter Q, the first letter in quill, &c. Q.
How are quills produced? A. From the wings of geese and other large
birds. Q. What is the use of the quill? A. To form into pens and many
other things. Q. What is the use of the pen? A. To dip into ink and
write with it. Q. What do you write upon? A. Paper. Q. What is paper
made of? A. Rags.


Q. What letter is this? A. Letter R, the first letter in rabbit, &c.
Q. What is the use of the rabbit? A. The flesh of the rabbit is
eaten, and is very nice. Q. What does the rabbit eat? A. Corn, grass,
cabbage-leaves, and many different herbs. Q. What is the use of the
skin? A. To make hats, and to trim boys' caps. Q. Are they very
numerous? A. They are to be found in almost all countries.


Q. What is this? A. Letter S, the first letter in shoe, &c. Q. What is
the use of shoes? A. To keep the feet warm and dry. Q. Should children
walk in the mud or in the kennel? A. No, because that would spoil the
shoes, and wear them out too soon. Q. And why should little children
be careful not to wear them out any more than they can help? A.
Because our parents must work harder to buy us more.


Q. What letter is this? A. Letter T, the first letter in tea-kettle.
Q. What are tea-kettles made of? A. Some are made of tin, and some of
copper, and some of iron. Q. Why are they not made of wood? A. Because
the wood would burn. Q. What thing is that at the top? A. The handle.
Q. What is underneath the handle? A. The lid. Q. What is in the front
of it? A. The spout. Q. What is the use of the spout? A. For the water
to come out. Q. What is the use of the handle? A. To take hold of. Q.
Why do they not take hold of the spout? A. Because it is the wrong


Q. What letter is this? A. Letter U, the first letter in umbrella, &c.
Q. Is letter U a vowel or consonant? A. A vowel. Q. What is the use of
the umbrella? A. To keep the rain off any body. Q. What are umbrellas
made of? A. Some of silk and some of cotton. Q. Which are the best?
A. Those that are made of silk. Q. Is there any thing else in an
umbrella? A. Yes; whalebone. Q. Where does whalebone come from? A. Out
of a large fish called a whale. Q. Who made the whale? A. Almighty


Q. What letter is this? A. Letter V, the first letter in vine, &c. Q.
What is a vine? A. A thing that grows against the wall and produces
grapes. Q. Why does it not grow like another tree, and support its own
weight? A. Because it is not strong enough. Q. Then it cannot grow and
become fruitful in this country without man's assistance? A. No; and,
please, sir, we cannot grow and become fruitful without the assistance
of Almighty God.[A]

[Footnote A: This answer was given by a child five-years of age.]


Q. What letter is this? A. It is Letter W, the first letter in wheel.
Q. Spell wheel. A. W-h-e-e-l. Q. What is the use of wheels? A. To make
it easier for horses to draw. Q. How do you know that? A. Please,
sir, I had a little cart full of stones, and the wheel came off; and,
please, sir, I found it much harder to draw. Q. Then if it was not
for wheels, the horses could not draw so great a weight? A. No, and,
please, sir, people could not go into the country so quick as they
do. Q. What trade do they call the persons that make wheels? A.


Q. What letter is this? A. Letter X, the first letter in Xenophon, a
man's name. Q. What was the particular character of Xenophon? A. He
was very courageous. Q. What does courageous mean? A. To be afraid to
do harm, but not to be afraid to do good, or anything that is right.
Q. What is the greatest courage? A. To conquer our own bad passions
and bad inclinations. Q. Is he a courageous man that can conquer his
bad passions? A. Yes; because they are the most difficult to conquer.


Q. What letter is this? A. Letter Y, the first letter in yoke, &c. Q.
Is it a vowel or consonant? A. When it begins a word it is called a
consonant, but if not, a vowel. Q. What is a yoke? A. Please, sir,
what the milk people carry the milk pails on. Q. What is the use of
the yoke? A. To enable the people to carry the milk easier.


Q. What letter is this? A. Letter Z, the first letter in Zealander. Q.
What is a Zealander? A. A man that lives on an island in the Southern
Ocean, called Zealand. Q. How do they live? A. Principally by hunting
and fishing. Q. What is hunting? A. Following animals to catch them.
Q. Who made all the animals? A. Almighty God.

* * * * *

The method above described is adapted to the large room, where the
children may be taught all together; but it is necessary to change the
scene even in this; for however novel and pleasing a thing may be
at first, if it be not managed with prudence it will soon lose
its effect. It is here to be observed, that the mode of teaching
described, is not practised every day, but only twice or thrice a
week. The children will take care that the teacher does not altogether
forget to teach them in any way that they have been accustomed to.
After letting the above plan lie by for a day or two, some of the
children will come to the teacher, and say, "Please, sir, may we
say the picture alphabet up in the gallery?" If the other children
overhear the question, it will go through the school like lightning:
"Oh yes--yes--yes, sir, if you please, do let us say the letters in
the gallery." Thus a desire is created in the children's minds, and it
is then especially that they may be taught with good effect.

_Another plan_ which we adopt, is in practice almost every day; but
it is better adapted to what is called the class-room: we have
the alphabet printed in large letters, both in Roman and Italic
characters, on one sheet of paper: this paper is pasted on a board, or
on pasteboard, and placed against the wall; the whole class then stand
around it, but instead of one of the monitors pointing to the letters,
the master or mistress does it; so that the children not only obtain
instruction from each other, but every child has a lesson from the
master or mistress twice every day.

Before they go to the reading lessons, they have the sounds of all the
words in spelling: thus the sound of a--ball, call, fall, wall; then
the reading-lesson is full of words of the same sound. In like manner
they proceed with other letters, as i--the sound of which they learn
from such words as five, drive, strive, until, by a series of lessons,
they become acquainted with all the sounds; and are able to read any
common book.

I have observed in some instances the most deplorable laxity in this
particular. Cases have occurred in which children have been for two
years at school, and yet scarcely knew the whole alphabet; and I have
known others to be four years in an infant school, without being able
to read. I hesitate not to say that the fault rests exclusively
with the teachers, who, finding this department of their work more
troublesome than others which are attractive to visitors, have
sometimes neglected it, and even thrown it entirely aside, affirming
that reading is not a part of the infant system at all! Such a
declaration is, however, only to be accounted for from the most
lamentable ignorance, preverseness, or both. Had it been true, we
should not have had a single infant school in Scotland, and throughout
that country the children read delightfully.

The great importance of full instruction in reading will be apparent
from the following considerations.

1. If the parents do not find the children learn to read, they will
discontinue sending them. This they consider essential, and nothing
else will be deemed by them an adequate substitute.

2. Children cannot make desirable progress in other schools which
they may enter, unless they obtain an ability to read at least simple

3. Neglect in this respect impedes the progress of the infant system.
Such an obstacle ought not to exist, and should at once be removed.

4. In manufacturing districts children go to work very soon; and if
they are not able to read before, there is reason to fear they will
not afterwards acquire the power; but if they have this, Sunday
schools may supply other deficiencies.

5. Want of ability to read prevents, of course, a knowledge of the
Word of God.

To prevent this evil, I have arranged a series, denominated
"Developing Lessons," the great object of which is to induce children
to think and reflect on what they see. They are thus formed: at the
top is a coloured picture, or series of coloured pictures of insects,
quadrupeds, and general objects. For instance, there is one containing
the poplar, hawk-moth, and wasp. The lesson is as follows: "The wasp
can sting, and fly as well as the moth, which does not sting. I hope
no wasp will sting me; he is small, but the hawk-moth is large. The
moth eats leaves, but the wasp loves sweet things, and makes a round
nest. If boys take the nest they may be stung: the fish like the
wasp-grubs." On this, questions are proposed: Which stings? Which is
small and which large? Which eats leaves? Which makes a round nest?
&c. &c.

To take another instance. There is a figure of an Italian, to which is
appended the following: "The Italian has got a flask of oil and a fish
in his hand, and something else in his hand which the little child
who reads this must find out. Any child can tell who makes use of the
sense of seeing. In Italy they make a good deal of wine; big grapes
grow there that they make it with. Italians can sing very well, and
so can little children when they are taught." Questions are likewise
proposed on this, as before.

Of these lessons, however, there is a great variety. All schools
should possess them: they will effectually prevent the evil alluded
to, by checking the apathy of children in learning to read, and
calling the teacher's powers into full exercise. They are equally
adapted to spelling and reading.

I will give several specimens of reading lessons in natural history,
each of which has a large, well-engraved and coloured plate at the
top, copied from nature.


How glad some poor children would be if they could read about the
eagle. He is a big strong bird, and has such great wings, and such
long sharp claws, that he can dig them into the lamb, hare, rabbit,
and other animals, and thus fly away with them to feed his young ones,
and to eat them himself. Eagles make such a large nest on the side of
some high rock, where nobody can get at it. There used to be eagles in
Wales, and there are some now in Scotland, but very few in England,
for they do not like to be where there are many people. _The Almighty
gave man dominion over the birds of the air_, as well as over the
other animals, and as he gave man power to _think_, if the eagles
become troublesome, men catch them, though they can fly so high; and
as the eagle knows this, he likes to keep out of our way, and go into
parts of the world where there are not so many people. There are many
sorts of eagles: the black eagle, the sea eagle, the bald eagle, and
others. They have all strong bills bent down in front, and strong
claws. This bird is mentioned in the Bible.

Questions are proposed after this is read, and thus the examination
proceeds:--Q. What is that? A. An eagle. Q. What sort of a bird is he?
A. He is big and strong. Q. What are those? A. His feathers. Q. What
else are they called? A. His plumage. Q. Is the eagle a small bird?
A. No, very large. Q. Are his claws long and sharp? A. Yes. Q. What
animals could he carry away? A. A lamb, a hare, a rabbit, or other
small animals. Q. What does he do with those? A. Feed his young ones.
Q. Where does the eagle make his nest? A. On the side of some rock. Q.
Why does he make it there? A. That no one may get at it. Q. Used there
to be eagles in Wales? A. Yes. Q. Where are there a few still? A. In
England, Scotland, and Ireland. Q. Why are they not as plentiful as
they were? A. Because they do not like to be where many men live. Q.
Did the Almighty give man dominion over the birds of the air? A. Yes.
Q. What other power did he give man? A. Power to think. Q. As men can
think, when the eagles became troublesome, what did they do? A. They
caught them. Q. And what did the eagles that were not caught do? A.
They went to places where men were not so plenty. Q. Are, there many
different kinds of eagles? A. Yes. Q. Name some. A. The black eagle,
the bald eagle, the sea eagle, and others.


The vulture is like the eagle in size, and some of its habits; but it
is so very different from it in many ways, that there is little danger
of confusing the two together: the greatest distinction between them
is, that the head of the vulture is either quite naked, or covered
only with a short down, while the eagle's is well feathered. This is
the chief difference in appearance, but in their habits there is a
much greater. Instead of flying over hills and valleys in pursuit of
living game, the vultures only search for dead carcasses, which they
prefer, although they may have been a long time dead, and therefore
very bad, and smelling very offensively. They generally live in very
warm countries, and are useful in clearing away those dead carcasses
which, but for them, would cause many dreadful diseases. In some
countries, indeed, on account of this, the inhabitants will not
allow any one to injure them, and they are called for this reason
scavengers, which means that they do the business for which scavengers
are employed. Vultures are very greedy and ravenous; they will often
eat so much that they are not able to move or fly, but sit quite
stupidly and insensible. One of them will often, at a single meal,
devour the entire body of an albatross (bones and all), which is a
bird nearly as large as the vulture itself. They will smell a dead
carcass at a very great distance, and will soon surround and devour

Vultures lay two eggs at a time and only once a year: they build their
nests on the same kind of places as eagles do, so that it is very hard
to find them.

What does the vulture resemble the eagle in? A. In size and in some of
its habits. Q. In what does it differ from the eagle? A. In having a
neck and head either naked or covered with short down. Q. What is the
difference in the manner in which they feed? A. The eagle seeks its
food over hill and valley, and lives entirely on prey which he takes
alive, while the vulture seeks out dead and putrid carcasses. Q. For
what reason do you suppose is the vulture's neck not covered with
feathers as the eagle's is? A. If they had feathers on their necks,
like eagles and hawks, they would soon become clotted with blood. Q.
Why would this happen? A. Because they are continually plunging their
necks into decayed flesh and bloody carcasses. Q. How do vultures sit?
A. In a dull, mopeing manner. Q. Where do they generally sit? A. On
tall dead trees. Q. Do they continue thus long? A. Yes, for several
hours. Q. What is the cause of their thus sitting so dull and
inactive? A. The great quantity of food they have eaten. Q. Is there
any description of vulture forming an exception to the general
character of those birds? A. Yes, that particular kind called the
snake eater. Q. Where is this bird a native of? A. Of Africa. Q. Why
is it called the snake eater? A. On account of its singular manner
of destroying serpents, on which it feeds. Q. Describe the manner in
which this bird kills its prey. A. He waits until the serpent raises
its head, and then strikes him with his wing, and repeats the blow
until the serpent is killed. Q. What do the natives of Asia and Africa
call the vulture? A. The scavenger. Q. Why? A. Because they are so
useful in eating dead carcasses. Q. How is this useful? A. It clears
the ground of them; otherwise, in those warm places, they would be the
cause of much disease. Q. What does this shew us? A. That the good God
has created nothing without its use. Q. What is the largest bird of
the vulture kind? A. The great condor of South America. Q. What does
its wing often measure from tip to tip? A. Twelve feet when spread
out. Q. How do the natives of South America often catch the vulture?
A. The dead carcass of a cow or horse is set for a bait, on which they
feed so ravenously that they become stupid, and are easily taken.


I hope you will not put your dirty hands on this picture of the
crocodile. The live ones have hard scales on their backs, and such a
many teeth, that they could bite a man's leg off; but there are none
in our land, only young ones that sailors bring home with them. The
crocodile can run fast; those are best off who are out of his way. He
lives by the water; he goes much in it; and he can swim well. Young
ones come out of eggs, which the old ones lay in the sand. Some
beasts eat the eggs, or else there would be too many crocodiles. The
crocodile can run fast if he runs straight, and those who wish to get
out of his way run zigzag, and he takes some time to turn; the poor
black men know this, and can get out of his way; but some of them can
fight and kill him on the land or in the water. I think the crocodile
is mentioned in _Scripture_. Ask your teacher what Scripture means.
When you learn geography you will know where many of the places are
that are mentioned in the Bible, and you will see where the river Nile
is. There are such a many crocodiles on the banks of that river that
the people are afraid to go alone. What a many wonderful animals our
great Creator has made! How humble and thankful we should be to see so
many great wonders!

Q. What have crocodiles on their backs? A. Hard scales. Q. Have they
many teeth? A. Yes, a great many. Q. Could they bite off a man's leg?
A. They could. Q. Are there any in our country? A. None wild, but a
few that sailors bring in ships. Q. Can the crocodile run fast? A.
Yes. Q. Where does he live? A. In the water. Q. What do their young
ones come out of? A. Out of eggs, which the old one lays in the sand.
Q. How do people run that wish to get out of the crocodile's way? A.
Zigzag, like the waved line in our lesson. Q. What do some men do? A.
Fight and kill them in the water. Q. Where do most of those animals
live? A. In the river Nile. Q. Where is this river? A. In Egypt.

The spelling lessons contain words capable of explanation, such as
white, black, round, square; others are classed as fleet, ship, brig,
sloop, &c.; and others are in contrast, as hot, cold, dark, light,
wet, dry, &c.

In this department we use the tablet placed beneath the arithmeticon,
the invention and improvement of which are described in the volume
entitled "Early Discipline Illustrated, or the Infant System
Successful and Progressing." A clear idea of the whole apparatus is
given by the wood-cut on the next page, and it ought certainly to be
found in every infant school. The sense of sight is then brought into
full action to aid the mind, and that with results which would not
easily be conceived. We shall take another opportunity of explaining
the use of the upper part of the apparatus, the lower demanding our
present attention.


To use the _tablet_, let the followings things be observed. It is
supposed the children know well there are twenty-six letters in the
alphabet; that twenty are called consonants, and that six are vowels.
We take first one perpendicular row of letters in the figure. Now
point to D, and say, What is that'? and the answer will be, D. Ask, Is
it a vowel or consonant, and they will reply, A consonant; but ask,
Why do you know it is D, and the answer will probably be, It is so
because it is. Hide the circular part of the letter, and ask, What is
the position of the other part, and they will say, having previously
learnt the elements of form which will shortly be explained, A
perpendicular line; hide that, and ask them what the other part is,
telling them to bend one of their fore-fingers in the same form, and
they will say, A curved line. If they are then asked how they may know
it is D, they will say, Because it is made of a perpendicular line and
has a curved line behind. Further information may then be given. Turn
the D letter up thus [Illustration: The character D turned on its
side], and say, I want to teach you the difference between concave and
convex: the under part of the curve is concave and the upper part of
it is convex. Then say, I shall now take the letter away, and wish you
to shew me concave and convex on one of your fingers; when they will
bend the forefinger and point them both out on it. Go on with the
other letters in the same way: shew them the vowels after the
consonants and analyze each one. For example, A is formed of two
inclined lines and a horizontal line to join them in the centre; and
the top of that letter is an acute angle, and were a line placed at
the bottom it would be a triangle. A brass letter may be moreover
shewn to be a substance: its properties may be described as hard,
smooth, bright, &c., and its coming from the mineral kingdom may be
noticed, and thus the instruction may be indefinitely varied.

The _power_ of letters may then be pointed out. Ask them to spell M R,
and they will give you the sound of R, or something like it, and so
in reference to other letters. But place the A against the M as it
appears in the figure, and you may teach them to say A, M, AM; and
thus all the way down the left side of the row of consonants. If then
you carry the vowel down on the other side of them, you will change
the lesson, and by such means go on almost _ad infinitum_. Double rows
of consonants may be placed with a vowel between them, and when well
practiced in this, they will ask for the vowel to be omitted that
they may supply it, which they will do very readily and with great
pleasure, while there is a tasking of the mind which cannot but prove

Again, turn the frame with the balls round, so that the wires are
perpendicular instead of horizontal, raise a ball gently, and say, To
ascend, ascending, ascended; let it fall gently, saying, to descend,
descending, descended; with a little explanation these words will then
be understood, and others may be taught in the same way. To fall,
falling, fallen; to rise, rising, risen; to go, going, gone, will
readily occur, and others will easily be supplied by the ingenuity of
the instructor. The frame may also be applied to _grammar_.

It is to be used as follows:--Move one of the balls to a part of the
frame distinct from the rest. The children will then repeat, "There
_it_ is, there _it_ is." Apply your finger to the ball, and set it
running round. The children will immediately change from saying,
"There _it_ is," to "There _it_ goes, there _it_ goes."

When they have repeated "There it goes" long enough to impress it on
their memory, stop the ball; the children will probably say, "Now _it_
stops, now _it_ stops." When that is the case, move another ball to
it, and then explain to the children the difference between singular
and plural, desiring them to call out, "There _they_ are, there _they_
are;" and when they have done that as long as may be proper, set both
balls moving, and it is likely they will call out, "There _they_ go,
there _they_ go." I do not particularize further, because I know that
good teachers will at once see the principle aimed at, and supply the
other requisite lessons: the object of this book being rather to shew
the principle of the thing, than to go into detail.



_The arithmeticon--How applied--Numeration--Addition--Subtraction--
Multiplication--Division--Fraction--Arithmetical tables--Arithmetical

* * * * *

"In arithmetic, as in every other branch of education, the principal
object should be to preserve the understanding from implicit belief,
to invigorate its powers, and to induce the laudable ambition of
progressive improvement."--_Edgeworth_

* * * * *

The advantage of a knowledge of arithmetic has never been disputed.
Its universal application to the business of life renders it an
important acquisition to all ranks and conditions of men. The
practicability of imparting the rudiments of arithmetic to very young
children has been satisfactorily shewn by the Infant-school System;
and it has been found, likewise, that it is the readiest and surest
way of developing the thinking faculties of the infant mind. Since the
most complicated and difficult questions of arithmetic, as well as
the most simple, are all solvable by the same rules, and on the same
principles, it is of the utmost importance to give children a clear
insight into the primary principles of number. For this purpose we
take care to shew them, by visible objects, that all numbers are
combinations of unity; and that all changes of number must arise
either from adding to or taking from a certain stated number. After
this, or rather, perhaps I should say, in conjunction with this
instruction, we exhibit to the children the _signs_ of number, and
make them acquainted with their various combinations; and lastly, we
bring them to the abstract consideration of number; or what may be
termed _mental arithmetic_. If you reverse this, which has generally
been the system of instruction pursued--if you set a child to learn
its multiplication, pence, and other tables, before you have shewn it
by _realities_, the combinations of unity which these tables express
in words--you are rendering the whole abstruse, difficult, and
uninteresting; and, in short, are giving it knowledge which it is
unable to apply.

As far as regards the general principles of numerical tuition, it may
be sufficient to state, that we should begin with unity, and proceed
very gradually, by slow and sure steps, through the simplest forms of
combinations to the more comprehensive. Trace and retrace your first
steps--the children can never be too thoroughly familiar with the
first principles or facts of number.

We have various ways of teaching arithmetic, in use in the schools;
I shall speak of them all, beginning with a description of the
arithmeticon, which is of great utility.


I have thought it necessary in this edition to give the original
woodcut of the arithmeticon, which it will be seen contains twelve
wires, with one ball on the first wire, two on the second, and so
progressing up to twelve. The improvement is, that each wire should
contain twelve balls, so that the whole of the multiplication table
may be done by it, up to 12 times 12 are 144. The next step was having
the balls painted black and white alternately, to assist the sense of
seeing, it being certain that an uneducated eye cannot distinguish
the combinations of colour, any more than an uneducated ear can
distinguish the combinations of sounds. So far the thing succeeded
with respect to the sense of seeing; but there was yet another thing
to be legislated for, and that was to prevent the children's attention
being drawn off from the objects to which it was to be directed, viz.
the smaller number of balls as separated from the greater. This object
could only be attained by inventing a board to slide in and hide the
greater number from their view, and so far we succeeded in gaining
their undivided attention to the balls we thought necessary to move
out. Time and experience only could shew that there was another thing
wanting, and that was a tablet, as represented in the second woodcut,
which had a tendency to teach the children the difference between real
numbers and representative characters, therefore the necessity of
brass figures, as represented on the tablet; hence the children would
call figure seven No. 1, it being but one object, and each figure they
would only count as one, thus making 937, which are the representative
characters, only three, which is the real fact, there being only three
objects. It was therefore found necessary to teach the children
that the figure seven would represent 7 ones, 7 tens, 7 hundreds, 7
thousands, or 7 millions, according to where it might be placed in
connection with the other figures; and as this has already been
described, I feel it unnecessary to enlarge upon the subject.



It will be seen that on the twelve parallel wires there are 144 balls,
alternately black and white. By these the elements of arithmetic may
be taught as follows:--

_Numeration_.--Take one ball from the lowest wire, and say units,
_one_, two from the next, and say tens, _two_; three from the third,
and say hundreds, _three_; four from the fourth, and say thousands,
_four_; five from the fifth, and say tens of thousands, _five_; six
from the sixth, and say hundreds of thousands, _six_; seven from the
seventh, and say millions, _seven_; eight from the eighth, and say
tens of millions, _eight_; nine from the ninth, and say hundreds of
millions, _nine_; ten from the tenth, and say thousands of millions,
_ten_; eleven from the eleventh, and say tens of thousands of
millions, _eleven_; twelve from the twelfth, and say hundreds of
thousands of millions, _twelve_.

The tablet beneath the balls has six spaces for the insertion of brass
letters and figures, a box of which accompanies the frame. Suppose
then the only figure inserted is the 7 in the second space from the
top: now were the children asked what it was, they would all say,
without instruction, "It is one." If, however, you tell them that an
object of such a form stands instead of seven ones, and place seven
balls together on a wire, they will at once see the use and power of
the number. Place a 3 next the seven, merely ask what it is, and they
will reply, "We don't know;" but if you put out three balls on a wire,
they will say instantly, "O it is three ones, or three;" and that they
may have the proper name they may be told that they have before
them _figure 7_ and _figure 3_. Put a 9 to these figures, and their
attention will be arrested: say, Do you think you can tell me what
this is? and, while you are speaking, move the balls gently out, and,
as soon as they see them, they will immediately cry out "Nine;" and in
this way they may acquire a knowledge of all the figures separately.
Then you may proceed thus: Units 7, tens 3; place three balls on the
top wire and seven on the second, and say, Thirty-seven, as you point
to the figures, and thirty-seven as you point to the balls. Then go
on, units 7, tens, 3, hundreds 9, place nine balls on the top wire,
three on the second, and seven on the third, and say, pointing to
each, Nine hundred and thirty-seven. And so onwards.

To assist the understanding and exercise the judgment, slide a figure
in the frame, and say, Figure 8. Q. What is this? A. No. 8. Q. If No.
1 be put on the left side of the 8, what will it be? A. 81. Q. If the
1 be put on the right side, then what will it be? A. 18. Q. If the
figure 4 be put before the 1, then what will the number be? A. 418. Q.
Shift the figure 4, and put it on the left side of the 8, then ask the
children to tell the number, the answer is 184. The teacher can keep
adding and shifting as he pleases, according to the capacity of his
pupils, taking care to explain as he goes on, and to satisfy himself
that his little flock perfectly understand him. Suppose figures
5476953821 are in the frame; then let the children begin at the left
hand, saying, units, tens, hundreds, thousands, tens of thousands,
hundreds of thousands, millions, tens of millions, hundreds of
millions, thousands of millions. After which, begin at the right side,
and they will say, Five thousand four hundred and seventy-six million,
nine hundred and fifty-three thousand, eight hundred and twenty-one.
If the children are practised in this way, they will soon learn

The frame was employed for this purpose long before its application to
others was perceived; but at length I found we might proceed to

_Addition_.--We proceed as follows:--1 and 2 are 3, and 3 are 6, and 4
are 10, and 5 are 15, and 6 are 21, and 7 are 28, and 8 are 36, and 9
are 45, and 10 are 55, and 11 are 66, and 12 are 78.

Then the master may exercise them backwards, saying, 12 and 11 are 23,
and 10 are 33, and 9 are 42, and 8 are 50, and 7 are 57, and 6 are 63,
and 5 are 68, and 4 are 72, and 3 are 75, and 2 are 77, and 1 is 78,
and so on in great variety.

Again: place seven balls on one wire, and two on the next, and ask
them how many 7 and 2 are; to this they will soon answer, Nine: then
put the brass figure 9 on the tablet beneath, and they will see how
the amount is marked: then take eight balls and three, when they will
see that eight and three are eleven. Explain to them that they cannot
put underneath two figure ones which mean 11, but they must put 1
under the 8, and carry 1 to the 4, when you must place one ball under
the four, and, asking them what that makes, they will say, Five.
Proceed by saying, How much are five and nine? put out the proper
number of balls, and they will say, Five and nine are fourteen. Put
a four underneath, and tell them, as there is no figure to put the 1
under, it must be placed next to it: hence they see that 937 added to
482, make a total of 1419.

_Subtraction_ may be taught in as many ways by this instrument. Thus:
take 1 from 1, nothing remains; moving the first ball at the same time
to the other end of the frame. Then remove one from the second wire,
and say, take one from 2, the children will instantly perceive that
only 1 remains; then 1 from 3, and 2 remain; 1 from 4, 3 remain; 1
from 5, 4 remain; 1 from 6, 5 remain; 1 from 7, 6 remain; 1 from 8, 7
remain; 1 from 9, 8 remain; 1 from 10, 9 remain; 1 from 11, 10 remain;
1 from 12, 11 remain.

Then the balls may be worked backwards, beginning at the wire
containing 12 balls, saying, take 2 from 12, 10 remain; 2 from 11, 9
remain; 2 from 10, 8 remain; 2 from 9, 7 remain; 2 from 8, 6 remain; 2
from 7, 5 remain; 2 from 6, 4 remain; 2 from 5, 3 remain; 2 from 4, 2
remain; 2 from 3, 1 remains.

The brass figure should be used for the remainder in each case. Say,
then, can you take 8 from 3 as you point to the figures, and they will
say "Yes;" but skew them 3 balls on a wire and ask them to deduct 8
from them, when they will perceive their error. Explain that in such a
case they must _borrow_ one; then say take 8 from 13, placing 12 balls
on the top wire, borrow one from the second, and take away eight and
they will see the remainder is five; and so on through the sum, and
others of the same kind.

In _Multiplication_, the lessons are performed as follows. The teacher
moves the first ball, and immediately after the two balls on the
second wire, placing them underneath the first, saying at the same
time, twice one are two, which the children will readily perceive. We
next remove the two balls on the second wire for a multiplier, and
then remove two balls from the third wire, placing them exactly under
the first two, which forms a square, and then say twice two are four,
which every child will discern for himself, as he plainly perceives
there are no more. We then move three on the third wire, and place
three from the fourth wire underneath them saying, twice three are
six. Remove the four on the fourth wire, and four on the fifth, place
them as before and say, twice four are eight. Remove five from the
fifth wire, and five from the sixth wire underneath them, saying twice
five are ten. Remove six from the sixth wire, and six from the seventh
wire underneath them and say, twice six are twelve. Remove seven from
the seventh wire, and seven from the eighth wire underneath them,
saying, twice seven are fourteen. Remove eight from the eighth wire,
and eight from the ninth, saying, twice eight are sixteen. Remove nine
on the ninth wire, and nine on the tenth wire, saying twice nine
are eighteen. Remove ten on the tenth wire, and ten on the eleventh
underneath them, saying, twice ten are twenty. Remove eleven on the
eleventh wire, and eleven on the twelfth, saying, twice eleven are
twenty-two. Remove one from the tenth wire to add to the eleven on
the eleventh wire, afterwards the remaining ball on the twelfth wire,
saying, twice twelve are twenty-four.

Next proceed backwards, saying, 12 times 2 are 24, 11 times 2 are 22,
10 times 2 are 20, &c.

For _Division_, suppose you take from the 144 balls gathered together
at one end, one from each row, and place the 12 at the other end, thus
making a perpendicular row of ones: then make four perpendicular rows
of three each and the children will see there are 4 3's in 12. Divide
the 12 into six parcels, and they will see there are. 6 2's in 12.
Leave only two out, and they will see, at your direction, that 2 is
the sixth part of 12. Take away one of these and they will see one is
the twelfth part of 12, and that 12 1's are twelve.

To explain the state of the frame as it appears in the cut, we must
first suppose that the twenty-four balls which appear in four lots,
are gathered together at the _figured side_: when the children will
see there are three perpendicular 8's, and as easily that there are 8
horizontal 3's. If then the teacher wishes them to tell how many 6's
there are in twenty-four, he moves them out as they appear in the
cut, and they see there are four; and the same principle is acted on

The only remaining branch of numerical knowledge, which consists in an
ability to comprehend the powers of numbers, without either visible
objects or signs--is imparted as follows:


One of the children is placed before the gallery, and repeats aloud,
in a kind of chaunt, the whole of the school repeating after him; One
and one are two; two and one are three; three and one are four, &c. up
to twelve.

Two and two are four; four and two are six; six and two are eight, &c.
to twenty-four.

Three and three are six; six and three are nine; nine and three are
twelve, &c. to thirty-six.


One from twelve leaves eleven; one from eleven leaves ten, &c.

Two from twenty-four leave twenty-two; two from twenty-two leave
twenty, &c.


Twice one are two; twice two are four, &c. &c. Three times three are
nine, three times four are twelve, &c. &c.

Twelve times two are twenty-four; eleven times two are twenty-two, &c.

Twelve times three are thirty-six; eleven times three are
thirty-three, &c. &c. until the whole of the multiplication table is
gone through.


There are twelve twos in twenty-four.--There are
eleven twos in twenty-two, &c. &c.
There are twelve threes in thirty-six, &c.
There are twelve fours in forty-eight, &c. &c.


Two are the half (1/2) of four.
" " " third (1/3) of six.
" " " fourth (1/2) of eight.
" " " fifth (1/5) of ten.
" " " sixth (1/6) of twelve.
" " " seventh (1/7) of fourteen.
" " " twelfth (1/12) of twenty-four; two are the
eleventh (1/11) of twenty-two, &c. &c.

Three are the half (1/2) of six.
" " " third (1/3) of nine.
" " " fourth (1/4) of twelve.

Three are the twelfth (1/12) of thirty-six; three are
the eleventh (1/11) of thirty-three, &c. &c.

Four are the half (1/2) of eight, &c.

In twenty-three are four times five, and three-fifths
(3/5) of five; in thirty-five are four times eight, and three-eighths
(3/8) of eight.

In twenty-two are seven times three, and one-third
(1/3) of three.

In thirty-four are four times eight, and one-fourth
(1/4) of eight.

The tables subjoined are repeated by the same method, each section
being a distinct lesson. To give an idea to the reader, the boy in the
rostrum says ten shillings the half (1/2) of a pound; six shillings
and eightpence one-third (1/3) of a pound, &c.

Sixpence the half (1/2) of a shilling, &c. Always remembering, that
whatever the boy says in the rostrum, the other children must repeat
after him, but not till the monitor has ended his sentence; and before
the monitor delivers the second sentence, he waits till the children
have concluded the first, they waiting for him, and he for them; this
prevents confusion, and is the means of enabling persons to understand
perfectly what is going on in the school.

In a book lately published, which is a compilation by two London
masters, it is stated, in the preface, that they were at a loss
for proper lessons: had they used those in existence I cannot help
thinking they were enough for the capacity of children under six years
of age.


Numeration, Addition, Subtraction, Multiplication, Division, and Pence

| 1 & | 2 & | 3 & | 4 & | 5 & | 6 & |
| 1 are 2 | 1 are 3 | 1 are 4 | 1 are 5 | 1 are 6 | 1 are 7 |
| 2 -- 3 | 2 -- 4 | 2 -- 5 | 2 -- 6 | 2 -- 7 | 2 -- 8 |
| 3 -- 4 | 3 -- 5 | 3 -- 6 | 3 -- 7 | 3 -- 8 | 3 -- 9 |
| 4 -- 5 | 4 -- 6 | 4 -- 7 | 4 -- 8 | 4 -- 9 | 4 -- 10 |
| 5 -- 6 | 5 -- 7 | 5 -- 8 | 5 -- 9 | 5 -- 10 | 5 -- 11 |
| 6 -- 7 | 6 -- 8 | 6 -- 9 | 6 -- 10 | 6 -- 11 | 6 -- 12 |
| 7 -- 8 | 7 -- 9 | 7 -- l0 | 7 -- 11 | 7 -- 12 | 7 -- 13 |
| 8 -- 9 | 8 -- 10 | 8 -- 11 | 8 -- 12 | 8 -- 13 | 8 -- 14 |
| 9 -- 10 | 9 -- 11 | 9 -- 12 | 9 -- 13 | 9 -- 14 | 9 -- 15 |
| 10 -- 11 | 10 -- 12 | 10 -- 13 | 10 -- 14 | 10 -- 15 | 10 -- 16 |
| 11 -- l2 | 11 -- 13 | 11 -- 14 | 11 -- 15 | 11 -- 16 | 11 -- 17 |
| l2 -- 13 | 12 -- 14 | 12 -- 14 | 12 -- 16 | 12 -- 17 | l2 -- 18 |
| 7 & | 8 & | 9 & | 10 & | 11 & | 12 & |
| 1 are 8 | 1 are 9 | 1 are 10 | 1 are 11 | 1 are 12 | 1 are 13 |
| 2 -- 9 | 2 -- 10 | 2 -- 11 | 2 -- 12 | 2 -- 13 | 2 -- 14 |
| 3 -- 10 | 3 -- 11 | 3 -- 12 | 3 -- 13 | 3 -- 14 | 3 -- 15 |
| 4 -- 11 | 4 -- 12 | 4 -- 13 | 4 -- 14 | 4 -- 15 | 4 -- 16 |
| 5 -- 12 | 5 -- 13 | 5 -- 14 | 5 -- 15 | 5 -- 16 | 5 -- 17 |
| 6 -- 13 | 6 -- 14 | 6 -- 15 | 6 -- 16 | 6 -- 17 | 6 -- 18 |
| 7 -- 14 | 7 -- 15 | 7 -- 16 | 7 -- 17 | 7 -- 18 | 7 -- 19 |
| 8 -- 15 | 8 -- 16 | 8 -- 17 | 8 -- 18 | 8 -- 19 | 8 -- 20 |
| 9 -- 16 | 9 -- 17 | 9 -- 18 | 9 -- 19 | 9 -- 20 | 9 -- 21 |
| 10 -- 17 | 10 -- 18 | 10 -- 19 | 10 -- 20 | 10 -- 21 | 10 -- 22 |
| 11 -- l8 | 11 -- 19 | 11 -- 20 | 11 -- 21 | 11 -- 22 | 11 -- 23 |
| 12 -- 19 | 12 -- 20 | 11 -- 21 | l2 -- 22 | 12 -- 23 | 12 -- 24 |
|2--2 are 4|4--5 are 20| 6--12 are 72|| 1 Units. |
| 3 -- 6| 6 -- 24| 7-- 7 -- 49|| 21 Tens. |
| 4 -- 8| 7 -- 28| 8 -- 56|| 321 Hundreds |
| 5 -- 10| 8 -- 32| 9 -- 63|| 4,321 Thousands. |
| 6 -- 12| 9 -- 36| 10 -- 70|| 54,321 X of Thousands.|
| 7 -- 14| 10 -- 40| 11 -- 77|| 654,321 C of Thousands.|
| 8 -- 16| 11 -- 44| 12 -- 84|| 7,654,321 Millions. |
| 9 -- 18| 12 -- 48| 8-- 8 -- 64|| 87,654,321 X of Millions. |
| 10 -- 20|5--5 -- 25| 9 -- 72||987,654,321 C of Millions. |
| 11 -- 22| 6 -- 30| 10 -- 80||===========================|
| 12 -- 24| 7 -- 35| 11 -- 88|| |
|3--3 -- 9| 8 -- 40| 12 -- 96|| PENCE TABLE |
| 4 -- 12| 9 -- 45| 9-- 9 -- 81|| |
| 5 -- 15| 10 -- 50| 10 -- 90||---------------------------|
| 6 -- 18| 11 -- 55| 11 -- 99|| _d_. _s. d._|_d._ _s. d._|
| 7 -- 21| 12 -- 60| 12 -- 108|| 20 is 1 8 | 90 is 7 6 |
| 8 -- 24|6--6 -- 36|10--10 -- 100|| 30 -- 2 6 |100 -- 8 4 |
| 9 -- 27| 7 -- 42| 11 -- 110|| 40 -- 3 4 |110 -- 9 2 |
| 10 -- 30| 8 -- 48| 12 -- 120|| 50 -- 4 2 |120 --10 0 |
| 11 -- 33| 9 -- 54|11--11 -- 121|| 60 -- 5 0 |130 --10 10 |
| 12 -- 36| 10 -- 60| 12 -- 132|| 70 -- 5 10 |140 --11 8 |
|4--4 -- 16| 11 -- 66|12--12 -- 144|| 80 -- 6 8 |144 --12 0 |

_Tables of Weights and Measures_.

_Shilling Tables_

_s. l. s_.
20 are 1 0
30 ---- 1 10
40 ---- 2 0
50 ---- 2 10
60 ---- 3 0
70 ---- 3 10
80 ---- 4 0
90 ---- 4 10
100 are 5 0
110 --- 5 10
120 --- 6 0
130 --- 6 10
140 --- 7 0
150 --- 7 10
160 --- 8 0
170 --- 8 10

* * * * *

_Practice Tables_.

* * * * *

Of a Pound.

_s. d_.
10 0 are half
6 8 --- third
5 0 --- fourth
4 0 --- fifth
3 4 --- sixth
2 6 --- eighth
1 8 --- twelfth
1 0 --- twentieth

Of a shilling.

6_d_. are half
4 --- third
3 --- fourth
2 --- sixth
1 --- twelfth

* * * * *


60 seconds 1 minute
60 minutes 1 hour
24 hours 1 day
7 days 1 week
4 weeks 1 lunar month
12 cal. mon. 1 year
13 lunar months, 1 day, 6 hours, or 365 days, 6 hours, 1 year.

Thirty days hath September,
April, June, and November;
All the rest have thirty-one,
Save February, which alone
Hath twenty-eigth, except Leap year,
And twenty-nine is then its share.

* * * * *

_Troy Weight_.

24 grains 1 pennywt.
20 pennywhts. 1 ounce
12 ounces 1 pound

* * * * *

_Avoirdupoise Weight_.

16 drams 1 ounce
16 ounces 1 pound
28 pounds 1 quarter
4 quarters 1 hund. wt.
20 hund. wt. 1 ton

* * * * *

_ Apothecaries Weight._

20 grains 1 scruple
3 scruples 1 dram
8 drams 1 ounce
12 ounces 1 pound

* * * * *

_Wool Weight_.

7 pounds 1 clove
2 cloves 1 stone
2 stones 1 tod
61/2 tods 1 wey
2 weys 1 sack
12 sacks 1 last

* * * * *

_Wine Measure_.

2 pints 1 quart
4 quarts 1 gallon
10 gallons 1 ank. brandy
42 gallons 1 tierce
63 gallons 1 hogshead
84 gallons 1 puncheon
2 hogsheads 1 pipe
2 pipes 1 ton

* * * * *

_Ale and Beer Measure_.
2 pints 1 quart
4 quarts 1 gallon
8 gallons 1 firkin of ale
9 gallons 1 firk. of beer
2 firkins 1 kilderkin
2 kilderkins 1 barrel
14 barrel 1 hogshead
2 barrels 1 puncheon
3 barrels 1 butt

* * * * *

_Coal Measure_.

4 pecks 1 bushel
9 bushels 1 vat or strike
3 bushels 1 sack
12 sacks 1 chaldron
91 chaldron 1 score

* * * * *

_Dry Measure_.

2 pints 1 quart
2 quarts 1 pottle
2 pottles 1 gallon
2 gallons 1 peck
4 pecks 1 bushel
2 bushels 1 strike
5 bushels 1 sack flour
8 bushels 1 quarter
5 quarters 1 wey or load
5 pecks 1 bushl. water measure
4 bushels 1 coom
10 cooms 1 wey
2 weys 1 last corn

* * * * *

_Solid or Cubic Measure_.

1728 inches 1 foot
27 feet 1 yard or load

* * * * *

_Long Measure_.

3 barleycorns 1 inch
12 inches 1 foot
3 feet 1 yard
6 feet 1 fathom
51/2 yards 1 pole or rod
40 poles 1 furlong
8 furlongs 1 mile
3 miles 1 league
20 leagues 1 degree

* * * * *

_Cloth Measure_.

24 inches 1 nail
4 nails 1 quarter
4 quarters 1 yard
5 quarters 1 English ell
3 quarters 1 Flemish ell
6 quarters 1 French ell

* * * * *

_Land or Square Measure_.

144 inches 1 foot
9 feet 1 yard
303/4 yards 1 pole
40 poles 1 rood
4 roods 1 acre
640 acres 1 mile

This includes length and breadth.

* * * * *


36 pounds 1 truss of straw
56 pounds 1 do. of old hay
60 pounds 1 do. of new hey
36 trusses 1 load


Two farthings one halfpenny make,
A penny four of such will take;
And to allow I am most willing
That twelve pence always make a shilling;
And that five shillings make a crown,
Twenty a sovereign, the same as pound.
Some have no cash, some have to spare--
Some who have wealth for none will care.
Some through misfortune's hand brought low,
Their money gone, are filled with woe,
But I know better than to grieve;
If I have none I will not thieve;
I'll be content whate'er's my lot,
Nor for misfortunes care a _groat_.
There is a Providence whose care
And sovereign love I crave to share;
His love is _gold without alloy_;
Those who possess't have _endless joy_.


Sixty seconds make a minute;
Time enough to tie my shoe
Sixty minutes make an hour;
Shall it pass and nought to do?

Twenty-four hours will make a day
Too much time to spend in sleep,
Too much time to spend in play,
For seven days will end the week,

Fifty and two such weeks will put
Near an end to every year;
Days three hundred sixty-five
Are the whole that it can share.

Saving leap year, when one day
Added is to gain lost time;
May it not be spent in play,
Nor in any evil crime.

Time is short, we often say;
Let us, then, improve it well;
That eternally we may
Live where happy angels dwell.


Sixteen drachms are just an ounce,
As you'll find at any shop;
Sixteen ounces make a pound,
Should you want a mutton chop.

Twenty-eight pounds are the fourth
Of an hundred weight call'd gross;
Four such quarters are the whole
Of an hundred weight at most.

Oh! how delightful,
Oh! how delightful,
Oh! how delightful,
_To sing this rule_.

Twenty hundreds make a ton;
By this rule all things are sold
That have any waste or dross
And are bought so, too, I'm told.

When we buy and when we sell,
May we always use just weight;
May we justice love so well
To do always what is right.

Oh! how delightful,
&c., &c., &c.


Twenty grains make a scruple,--some scruple to take;
Though at times it is needful, just for our health's sake;
Three scruples one drachm, eight drachms make one ounce,
Twelve ounces one pound, for the pestle to pounce.

By this rule is all medicine mix'd, though I'm told
By Avoirdupoise weight 'tis bought and 'tis sold.
But the best of all physic, if I may advise,
Is temperate living and good exercise.


Two pints will make one quart
Of barley, oats, or rye;
Two quarts one pottle are, of wheat
Or any thing that's dry.

Two pottles do one gallon make,
Two gallons one peck fair,
Four pecks one bushel, heap or brim,
Eight bushels one quarter are.

If, when you sell, you give
Good measure shaken down,
Through motives good, you will receive
An everlasting crown.


Two pints will make one quart,
Four quarts one gallon, strong:--
Some drink but little, some too much,--
To drink too much is wrong.

Eight gallons one firkin make,
Of liquor that's call'd ale
Nine gallons one firkin of beer,
Whether 'tis mild or stale.

With gallons fifty-four
A hogshead I can fill:
But hope I never shall drink much,
Drink much whoever will.


Two pints will make one quart
Of any wine, I'm told:
Four quarts one gallon are of port
Or claret, new or old.

Forty-two gallons will
A tierce fill to the bung:
And sixty-three's a hogshead full
Of brandy, oil, or rum.

Eighty-four gallons make
One puncheon fill'd to brim,
Two hogsheads make one pipe or butt,
Two pipes will make one tun.

A little wine within
Oft cheers the mind that's sad;
But too much brandy, rum, or gin,
No doubt is very bad.

From all excess beware,
Which sorrow must attend;
Drunkards a life of woe must share,--
When time with them shall end.

The arithmeticon, I would just remark, may be applied to _geometry_.
Round, square, oblong, &c. &c., may be easily taught. It may also be
used in teaching _geography_. The shape of the earth may be shewn by
a ball, the surface by the outside, its revolution on its axis by
turning it round, and the idea of day and night may be given by a ball
and a candle in a dark-room.

As the construction and application of this instrument is the result
of personal, long-continued, and anxious effort, and as I have rarely
seen a pirated one made properly or understood, I may express a
hope that whenever it is wanted either for schools or nurseries,
application will be made for it to my depot.

I have only to add, that a board is placed at the back to keep the
children from seeing the balls, except as they are put out; and that
the brass figures at the side are intended to assist the master when
he is called away, so that he may see, on returning to the frame,
where he left off.

The slightest glance at the wood-cut will shew how unjust the
observations of the writer of "Schools for the Industrious Classes, or
the Present State of Education amongst the Working People of England,"
published under the superintendance of the Central Society of
Education, are, where he says, "We are willing to assume that Mr.
Wilderspin has originated some improvements in the system of Infant
School education; but Mr. Wilderspin claims so much that many persons
have been led to refuse him that degree of credit to which he is
fairly entitled. For example, he claims a beneficial interest in
an instrument called the Arithmeticon, of which he says he was the
inventor. This instrument was described in a work on arithmetic,
published by Mr. Friend forty years ago. The instrument is, however,
of much older date; it is the same in principle as the Abacus of the
Romans, and in its form resembles as nearly as possible the Swanpan
of the Chinese, of which there is a drawing in the Encyclopaedia
Brittanica. Mr. Wilderspin merely invented the name." Now, I defy
the writer of this to prove that the Arithmeticon existed before I
invented it. I claim no more than what is my due. The Abacus of the
Romans is entirely different; still more so is the Chinese Swanpan;
if any person will take the trouble to look into the Encyclopaedia
Britannica, they will see the difference at once, although I never
heard of either until they were mentioned in the pamphlet referred to.
There are 144 balls on mine, and it is properly simplified for infants
with the addition of the tablet, which explains the representative
characters as well as the real ones, which are the balls.

I have not yet heard what the Central Society have invented; probably
we shall soon hear of the mighty wonders performed by them, from one
end of the three kingdoms to the other. Their whole account of the
origin of the Infant System is as partial and unjust as it possibly
can be. Mr. Simpson, whom they quote, can tell them so, as can
also some of the committee of management, whose names I see at the
commencement of the work. The Central Society seem to wish to pull me
down, as also does the other society to whom reference is made is the
same page of which I complain; and I distinctly charge both societies
with doing me great injustice; the society complains of my plans
without knowing them, the other adopts them without acknowledgment,
and both have sprung up fungus-like, after the Infant System had been
in existence many years, and I had served three apprenticeships to
extend and promote it, without receiving subscriptions or any public
aid whatever. It is hard, after a man has expended the essence of his
constitution, and spent his children's property for the public good,
in inducing people to establish schools in the principal towns in
the three kingdoms,--struck at the root of domestic happiness, by
personally visiting each town, doing the thing instead of writing
about it--that societies of his own countrymen should be so anxious to
give the credit to foreigners. Verily it is most true that a Prophet
has no honour in his own country. The first public honour I ever
received was at Inverness, in the Highlands of Scotland, the last was
by the Jews in London, and I think there was a space of about twenty
years between each.



_Method of instruction, geometrical song--Anecdotes--Size--Song

* * * * *

"Geometry is eminently serviceable to improve and strengthen the
intellectual faculties."--_Jones_.

* * * * *

Among the novel features of the Infant School System, that of
geometrical lessons is the most peculiar. How it happened that a mode
of instruction so evidently calculated for the infant mind was so long
overlooked, I cannot imagine; and it is still more surprising that,
having been once thought of, there should be any doubt as to its
utility. Certain it is that the various forms of bodies is one of the
first items of natural education, and we cannot err when treading in
the steps of Nature. It is undeniable that geometrical knowledge is of
great service in many of the mechanic arts, and, therefore, proper
to be taught children who are likely to be employed in some of those
arts; but, independently of this, we cannot adopt a better method of
exciting and strengthening their powers of observation. I have seen a
thousand instances, moreover, in the conduct of the children, which
have assured me, that it is a very pleasing as well as useful branch
of instruction. The children, being taught the first elements of form,
and the terms used to express the various figures of bodies, find in
its application to objects around them an inexhaustible source of
amusement. Streets, houses, rooms, fields, ponds, plates, dishes,
tables; in short, every thing they see calls for observation, and
affords an opportunity for the application of their geometrical
knowledge. Let it not, then, be said that it is beyond their capacity,
for it is the simplest and most comprehensible to them of all
knowledge;--let it not be said that it is useless, since its
application to the useful arts is great and indisputable; nor is it to
be asserted that it is unpleasing to them, since it has been shewn to
add greatly to their happiness.

It is essential in this, as in every other branch of education,
to begin with the first principles, and proceed _slowly_ to their
application, and the complicated forms arising therefrom. The next
thing is to promote that application of which we have before spoken,
to the various objects around them. It is this, and this alone, which
forms the distinction between a school lesson and practical knowledge;
and so far will the children be found from being averse from this
exertion, that it makes the acquirement of knowledge a pleasure
instead of a task. With these prefatory remarks I shall introduce
a description of the method I have pursued, and a few examples of
geometrical lessons.

We will suppose that the whole of the children are seated in the
gallery, and that the teacher (provided with a brass instrument formed
for the purpose, which is merely a series of joints like those to a
counting-house candlestick, from which I borrowed the idea,[A] and
which may be altered as required, in a moment,) points to a straight
line, asking, What is this? A. A straight line. Q. Why did you not
call it a crooked line? A. Because it is not crooked, but straight. Q.
What are these? A. Curved lines. Q. What do curved lines mean? A. When
they are bent or crooked. Q. What are these? A. Parallel straight
lines. Q. What does parallel mean? A. Parallel means when they are
equally distant from each other in every part. Q. If any of you
children were reading a book. that gave an account of some town which
had twelve streets, and it is said that the streets were parallel,
would you understand what it meant? A. Yes; it would mean that the
streets were all the same way, side by side, like the lines which we
now see. Q. What are those? A. Diverging or converging straight lines.
Q. What is the difference between diverging and converging lines and
parallel lines? A. Diverging or converging lines are not at an equal
distance from each other, in every part, but parallel lines are. Q.
What does diverge mean? A. Diverge means when they go from each other,
and they diverge at one end and converge at the other.[B] Q. What does
converge mean? A. Converge means when they come towards each other.
Q. Suppose the lines were longer, what would be the consequence? A.
Please, sir, if they were longer, they would meet together at the end
they converge. Q. What would they form by meeting together? A. By
meeting together they would form an angle. Q. What kind of an angle?
A. An acute angle? Q. Would they form an angle at the other end? A.
No; they would go further from each other. Q. What is this? A. A
perpendicular line. Q. What does perpendicular mean? A. A line up
straight, like the stem of some trees. Q. If you look, you will see
that one end of the line comes on the middle of another line; what
does it form? A. The one which we now see forms two right angles. Q.
I will make a straight line, and one end of it shall lean on another
straight line, but instead of being upright like the perpendicular
line, you see that it is sloping. What does it form? A. One side of
it is an acute angle, and the other side is an obtuse angle. Q. Which
side is the obtuse angle? A. That which is the most open. Q. And which
is the acute angle? A. That which is the least open. Q. What does
acute mean? A. When the angle is sharp. Q. What does obtuse mean? A.
When the angle is less sharp than the right angle. Q. If I were to
call any one of you an acute child, would you know what I meant? A.
Yes, sir; one that looks out sharp, and tries to think, and pays
attention to what is said to him; and then you would say he was an
acute child.

[Footnote b: Mr. Chambers has been good enough to call the instrument
referred to, a gonograph; to that name I have no objection.]

[Footnote B: Desire the children to hold up two fingers, keeping them
apart, and they will perceive they diverge at top and converge at

_Equi-lateral Triangle_.

Q. What is this? A. An equi-lateral triangle. Q. Why is it called
equi-lateral? A. Because its sides are all equal. Q. How many sides
has it? A. Three sides. Q. How many angles has it? A. Three angles.
Q. What do you mean by angles? A. The space between two right lines,
drawn gradually nearer to each other, till they meet in a point.
Q. And what do you call the point where the two lines meet? A. The
angular point. Q. Tell me why you call it a tri-angle. A. We call it a
tri-angle because it has three angles. Q. What do you mean by equal?
A. When the three sides are of the same length. Q. Have you any thing
else to observe upon this? A. Yes, all its angles are acute.

_Isoceles Triangle_.

Q. What is this? A. An acute-angled isoceles triangle. Q. What does
acute mean? A. When the angles are sharp. Q. Why is it called an
isoceles triangle? A. Because only two of its sides are equal. Q. How
many sides has it? A. Three, the same as the other. Q. Are there any
other kind of isoceles triangles? A. Yes, there are right-angled and

[Here the other triangles are to be shewn, and the master must explain
to the children the meaning of right-angled and obtuse-angled.]

_Scalene Triangle_.

Q. What is this? A. An acute-angled scalene triangle. Q. Why is it
called an acute-angled scalene triangle? A. Because all its angles are
acute, and its sides are not equal. Q. Why is it called scalene? A.
Because it has all its sides _unequal_. Q. Are there any other kind of
scalene triangles? A. Yes, there is a right-angled scalene triangle,
which has one right angle. Q. What else? A. An obtuse-angled scalene
triangle, which has one obtuse angle. Q. Can an acute triangle be an
equi-lateral triangle? A. Yes, it may be equilateral, isoceles, or
scalene. Q. Can a right-angled triangle, or an obtuse-angled triangle,
be an equilateral? A. No; it must be either an isoceles or a scalene


Q. What is this? A. A square. Q. Why is it called a square? A. Because
all its angles are right angles, and its sides are equal. Q. How many
angles has it? A. Four angles. Q. What would it make if we draw a
line from one angle to the opposite one? A. Two right-angled isoceles
triangles. Q. What would you call the line that we drew from one angle
to the other? A. A diagonal. Q. Suppose we draw another line from the
other two angles. A. Then it would make four triangles.


Q. What is this? A. A regular pentagon. Q. Why is it called a
pentagon? A. Because it has five sides and five angles. Q. Why is it
called regular? A. Because its sides and angles are equal. Q. What
does pentagon mean? A. A five-sided figure. Q. Are there any other
kinds of pentagons? A. Yes, irregular pentagons? Q. What does
irregular mean? A. When the sides and angles are not equal.


Q. What is this? A. A hexagon. Q. Why is it called a hexagon? A.
Because it has six sides and six angles. Q. What does hexagon mean? A.
A six-sided figure. Q. Are there more than one sort of hexagons? A.
Yes, there are regular and irregular. Q. What is a regular hexagon?
A. When the sides and angles are all equal. Q. What is an irregular
hexagon? A. When the sides and angles are not equal.


Q. What is this? A. A regular heptagon. Q. Why is it called a
heptagon? A. Because it has seven sides and seven angles. Q. Why is it
called a regular heptagon? A. Because its sides and angles are equal.
Q. What does a heptagon mean? A. A seven-sided figure. Q. What is
an irregular heptagon? A. A seven-sided figure, whose sides are not


Q. What is this? A. A regular octagon. Q. Why is it called a regular
octagon? A. Because it has eight sides and eight angles, and they are
all equal. Q. What does an octagon mean? A. An eight-sided figure. Q.
What is an irregular octagon? A. An eight-sided figure, whose sides
and angles are not all equal. Q. What does an octave mean? A. Eight
notes in music.


Q. What is this? A. A nonagon. Q. Why is it called a nonagon? A.
Because it has nine sides and nine angles. Q. What does a nonagon
mean? A. A nine-sided figure. Q. What is an irregular nonagon? A. A
nine-sided figure whose sides and angles are not equal.


Q. What is this? A. A regular decagon. Q. What does a decagon mean? A.
A ten-sided figure. Q. Why is it called a decagon? A. Because it has
ten sides and ten angles, and there are both regular and irregular

_Rect-angle or Oblong_.

Q. What is this? A. A rectangle or oblong. Q. How many sides and
angles has it? A. Four, the same as a square. Q. What is the
difference between a rectangle and a square? A. A rectangle has two
long sides, and the other two are much shorter, but a square has its
sides equal.


Q. What is this? A. A rhomb. Q. What is the difference between a rhomb
and a rectangle? A. The sides of the rhomb are equal, but the sides of
the rectangle are not all equal. Q. Is there any other difference? A.
Yes, the angles of the rectangle are equal, but the rhomb has only its
opposite angles equal.


Q. What is this? A. A rhomboid. Q. What is the difference between a
rhomb and a rhomboid? A. The sides of the rhomboid are not equal, nor
yet its angles, but the sides of the rhomb are equal.


Q. What is this. A. A trapezoid. Q. How many sides has it? A. Four
sides and four angles, it has only two of its angles equal, which are
opposite to each other.


Q. What do we call these figures that have four sides. A. Tetragons,
_tetra_ meaning four. Q. Are they called by another name? A. Yes,
they are called quadrilaterals, or quadrangles. Q. How many regular
tetragons are among those we have mentioned? A. One, that is the
square, all the others are irregular tetragons, because their sides
and angles are not all equal. Q. By what name would you call the whole
of the figures on this board? A. Polygons; those that have their sides
and angles equal we would call regular polygons. Q. What would you
call those angles whose sides were not equal? A. Irregular polygons,
and the smallest number of sides a polygon can have is three, and the
number of corners are always equal to the number of sides.

_Ellipse or Oval_.

Q. What is this? A. An ellipse or an oval. Q. What shape is the top or
crown of my bat? A. Circular. Q. What shape is that part which comes
on my forehead and the back part of my head? A. Oval.

The other polygons are taught the children in rotation, in the same
simple manner, all tending to please and edify them.

The following is sung:--

Horizontal, perpendicular,
Horizontal, perpendicular,
Parallel, parallel,
Parallel, lines,
Diverging, converging, diverging lines,
Diverging, converging, diverging lines.

Spreading wider, or expansion,
Drawing nearer, or contraction,
Falling, rising,
Slanting, crossing,
Convex, concave, curved lines,
Convex, concave, curved lines.

Here's a wave line, there's an angle,
Here's a wave line, there's an angle;
An ellipsis,
Or an oval,
A semicircle half way round,
Then a circle wheeling round.

Some amusing circumstances have occured from the knowledge of form
thus acquired.

"D'ye ken, Mr. Wilderspin," said a child at Glasgow one day, "that we
have an oblong table: it's made o' deal; four sides, four corners, twa
lang sides, and twa short anes; corners mean angles, and angles mean
corners. My brother ga'ed himsel sic a clink o' the eye against ane at
hame; but ye ken there was nane that could tell the shape o' the thing
that did it!"

A little boy was watching his mother making pan-cakes and wishing
they were all done; when, after various observations as to their
comparative goodness with and without sugar, he exclaimed, "I wonder
which are best, _elliptical_ pan-cakes or _circular_ ones!" As this
was Greek to the mother she turned round with "What d'ye say?" When
the child repeated the observation. "Bless the child!" said the
astonished parent, "what odd things ye are always saying; what can you
mean by liptical pancakes? Why, you little fool, don't you know they
are made of flour and eggs, and did you not see me put the milk into
the large pan and stir all up together?" "Yes," said the little
fellow, "I know what they are made of, and I know what bread is
made of, but that is'nt the shape; indeed, indeed, mother, they are
_elliptical pan-cakes_, because they are made in an _elliptical
frying-pan_." An old soldier who lodged in the house, was now called
down by the mother, and he decided that the child was right, and far
from being what, in her surprize and alarm, she took him to be.

On another occasion a little girl had been taken to market by her
mother, where she was struck by the sight of the carcasses of six
sheep recently killed, and said, "Mother, what are these?" The reply
was, "Dead sheep, dead sheep, don't bother." "They are suspended,
perpendicular, and parallels," rejoined the child. "What? What?" was
then the question. "Why, mother," was the child's answer, "don't you
see they hang up, that's suspended; they are straight up, that's
perpendicular; and they are at equal distances, that's parallel."

On another occasion a child came crying to school, at having been
beaten for contradicting his father, and begged of me to go to his
father and explain; which I did. The man received me kindly, and told
me that he had beaten the child for insisting that the table which
he pointed out was not _round_, which he repeated was against all
evidence of the senses; that the child told him that if it was round,
nothing would stand upon it, which so enraged him, that he thrashed
him, as he deserved, and sent him off to school, adding, to be thus
contradicted by a child so young, was too bad. The poor little fellow
stood between us looking the picture of innocence combined with
oppression, which his countenance fully developed, but said not a
word. Under the said table there happened to be a ball left by a
younger child. I took it up and kindly asked the man the shape of it?
he instantly replied, "_Round_." "Then," said I, "is that table the
same shape as the ball?" The man thought for a minute, and then said,
"It is _round-flat_." I then explained the difference to him between
the one and the other, more accurately, of course, than the infant
could; and told him, as he himself saw a distinction, it was evident
they were not both alike, and told him that the table was circular.
"Ah!" said be, "that is just what the little one said! but I did not
understand what circular meant; but now I see he is right." The
little fellow was so pleased, that he ran to his father directly with
delight. The other could not resist the parental impulse, but seized
the boy and kissed him heartily.

The idea of _size_ is necessary to a correct apprehension of objects.
To talk of yards, feet, or inches, to a child, unless they are shown,
is just as intelligible as miles, leagues, or degrees. Let there then
be two five-feet rods, a black foot and a white foot alternately, the
bottom foot marked in inches, and let there be a horizontal piece to
slide up and down to make various heights. Thus, when the height of a
lion, or elephant, &c. &c., is mentioned, it may be shown by the rod;
while the girth may be exhibited by a piece of _cord_, which should
always be ready. Long measure is taught as follows:

Take barley-corns of mod'rate length,
And three you'll find will make an inch;
Twelve inches make a foot;--if strength
Permit; I'll leap it and not flinch.
Three feet's a yard, as understood
By those possess'd with sense and soul;
Five feet and half will make a rood,
And also make a perch or pole.
Oh how pretty, wond'rously pretty,
Every rule
We learn at school
Is wondrously pretty.

Forty such poles a furlong make,
And eight such furlongs make a mile,
O'er hedge, or ditch, or seas, or lake;
O'er railing, fence, or gate, or stile.
Three miles a league, by sea or land,
And twenty leagues are one degree;
Just four times ninety degrees a band
Will make to girt the earth and sea.
Oh how pretty, &c.

But what's the girth of hell or heaven?
(No natural thought or eye can see,)
To neither girth or length is given;
'Tis without space--Immensity.
Still shall the good and truly wise,
The seat of heaven with safety find;
Because 'tis seen with inward eyes,
The first resides within their mind.
Oh how pretty, &c.

Whatever can be shewn by the rod should be, and I entreat teachers not
to neglect this part of their duty. If the tables be merely learnt,
the children will be no wiser than before.

Another anecdote may be added here, to shew that children even under
punishment may think of their position with advantage. Doctor J., of
Manchester, sent two of his children to an infant school, for the
upper classes, and one of his little daughters had broken some rule in
conjunction with two other little ladies in the same school; two of
the little folks were placed, one in each corner of the room, and Miss
J. was placed in the centre, when the child came home in the evening,
Doctor J. enquired, "Well, Mary, how have you got on at school to
day?" the reply was "Oh, papa, little Miss ---- and Fanny ----, and I,
were put out, they were put in the corners and I in the middle of the
room, and there we all stood, papa, a complete _triangle_ of dunces."
The worthy doctor took great pleasure in mentioning this anecdote
in company, as shewing the effect of a judicious cultivation of the
thinking faculties.

In my peregrinations by sea and land, with infants, we have had some
odd and amusing scenes. I sometimes have had infants at sea for
several days and nights to the great amusement of the sailors: I have
seen some of these fine fellows at times in fits of laughter at the
odd words, as they called them, which the children used; at other
times I have seen some of them in tears, at the want of knowledge,
they saw in themselves; and when they heard the infants sing on deck,
and explain the odd words by things in the ship, the sailors were
delighted to have the youngsters in their berths, and no nurse could
take better care of them than these noble fellows did.

I could relate anecdote after anecdote to prove the utility of this
part of our system, but as it is now more generally in the training
juvenile schools, and becoming better known, it may not be necessary,
especially as the prejudice against it is giving way, and the public
mind is better informed than it was on the subject, and moreover it
must be given more in detail in the larger work on Juvenile Training
or National Education.



_Its attraction for children--Sacred Geography-Geographical song--and
lesson on geography_.

* * * * *

"From sea to sea, from realm to realm I rove."--_Tickell_.

* * * * *

Geography is to children a delightful study. We give some idea of
it at an early period in infant schools, by singing, "London is the
capital, the capital, the capital, London is the capital, the capital
of England," and other capitals in the same way; and also by pictures
of the costumes of the various people of the world. To teach the four
quarters of the globe, we tell children the different points of the
play-ground, and then send them to the eastern, western, northern, or
southern quarters, as we please. A weathercock should also be placed
at the top of the school, and every favourable day opportunities
should be seized by the teachers to give practical instructions upon

[Footnote A: If the lesson is on objects it will shew how children are
taught the points of the compass, with which we find they are very
much delighted, the best proof that can be given that it is not
injurious to the faculties.]

Sacred geography is of great importance, and children are much pleased
at finding out the spots visited by our Saviour, or the route of the
apostle Paul.


The earth, on which we all now live,
Is called a globe--its shape I'll give;
If in your pocket you've a ball,
You have it's shape,--but that's not all;
For land and water it contains,
And presently I'll give their names.
The quarters are called, Africa,
Europe, Asia, and America;
These contain straits, oceans, seas,
Continents, promontories,
Islands, rivers, gulfs, or bays,
Isthmusses, peninsulas,--
Each divides or separates
Nations, kingdoms, cities, states,--
Mountains, forests, hills, and dales,
Dreary deserts, rocks, and vales.

In forests, deserts, bills, and plains,
Where feet have never trod,
There still in mighty power, He reigns,
An ever-present God.


The _east_ is where the sun does rise
Each morning, in the glorious skies;
Full _west_ he sets, or hides his head,
And points to us the time for bed;
He's in the _south_ at dinner time;
The _north_ is facing to a line.

The above can be given as a gallery lesson, and it will at once be
seen that it requires explanation: the explanation is given by the
teacher in the same way as we have hinted at in former lessons, though
for the sake of those teachers who may not be competent to do it, we
subjoin the following:

Q. Little children what have we been singing about? A. The earth on
which we live. Q. What is the earth called? A. A globe. Q. What is the
shape of a globe? A. Round, like an orange. Q. Is the earth round,
like an orange? A. Yes. Q. Does it always stand still? A. No, it goes
round the sun. Q. How often does it go round the sun in a year? A.
Once. Q. Does it go round anything else but the sun? A. Yes, round its
own axis, in the same way as you turn the balls round on the wires
of the arithmeticon. Q. What are these motions called? A. Its motion
round the sun is called its annual or yearly motion. Q. What is its
other motion called? A. Its diurnal or daily motion. Q. What is caused
by its motion round the sun? A. The succession of summer, winter,
spring, and autumn, which are called the four seasons, is caused by
this. Q. What is caused by its daily motion round its own axis? A. Day
and night. Q. Into what two principal things is this earth on which we
live divided? A. Into land and water. Q. Into how many great parts is
the globe divided? A. Into five. Q. Which are they? A. Europe, Asia,
Africa, America, and Australia. Q. Which part do you live in? A. In
Europe. Q. We sung that those great parts contained

Straits, oceans, seas,
Continents, promontories,
Islands, rivers, gulfs, or bays,
Isthmusses, peninsulas.

Q. What is a strait? A. A narrow part of the sea joining one great sea
to another. Q. What is an ocean? A. A very large sea. Q. What is a
gulf or bay? A. A part of the sea running a long way into the land.
Q. What is a continent? A. A very large tract of land. Q. What does a
continent contain? A. Nations and kingdoms, such as England. Q. What
more? A. Many cities and towns. Q. What more? A. Mountains. Q What are
mountains? A. Very high steep places. Q. What more does a continent
contain? A. Forests, hills, deserts, and valleys. Q. What is a forest?
A. Many large trees growing over a great deal of the land is a forest.
Q. What are hills? A. Parts of the ground which rise higher than the
rest. Q. What is a desert? A. A part of the earth where nothing will
grow, and which is covered with hot sand. Q. What is a valley? A. A
part of the earth which is lower than the rest, with hills at each
side. Q. Who made all that we have been speaking of? A. Almighty God.

I can remember the time when no national school in England possessed
a _map_. It was thought dangerous to teach geography, as in fact
anything but cramming the memory, and reading and writing. With regard
to the reading I will say nothing as to how much was understood,
explaining then, was out of the question. What a change have I lived
to see!



_Pictures--Religious instruction--Specimens of picture lessons
on Scripture and natural history--other means of religious
instruction--Effects of religious instruction--observation_.

* * * * *

"The parents of Dr. Doddridge brought him up in the early knowledge of
religion. Before he could read, his mother taught him the histories of
the Old and New Testament, by the assistance of some Dutch tiles in
the chimney of the room where they usually sat; and accompanied her
instructions with such wise and pious reflections, as make strong and
lasting impressions upon his heart"--_See his Life_.[A]

[Footnote A: This gave me the idea of introducing Scripture pictures
for the infants; and that they are successful can be vouched for by
hundreds of teachers besides myself.]

* * * * *

To give the children general information, it has been found advisable
to have recourse to pictures of natural history, such as of birds,


Back to Full Books